不平衡分类(二)-过采样(SMOTE)【Synthetic Minority Over-Sampling Technique ,“人工少数类过采样法“】

SMOTE(Synthetic Minority Over-Sampling Technique)是一种用于不平衡分类的数据预处理技术,通过合成新样本来平衡数据集。本文介绍了SMOTE的原理,包括选择正样本,找到K个近邻,随机选取近邻并在连线上生成新样本。此外,还讨论了SMOTE的优化方法,如borderline1和borderline2,以及它们如何处理接近分类边界的样本。最后,展示了SMOTE在实际应用中的实现,并提到了其可能存在的重叠问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SMOTE的全称是Synthetic Minority Over-Sampling Technique 即“人工少数类过采样法”,非直接对少数类进行重采样,而是设计算法来人工合成一些新的少数样本。

一、SMOTE原理

1、SMOTE步骤__1.选一个正样本

红色圈覆盖

在这里插入图片描述

2、SMOTE步骤__2.找到该正样本的K个近邻(假设K = 3)

在这里插入图片描述

3、SMOTE步骤__3.随机从K个近邻中选出一个样本

绿色的

在这里插入图片描述

4、SMOTE步骤__4.在正样本和随机选出的这个近邻之间的连

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值