NLP模型笔记2022-10:nlp句法分析模型评价标准UAS/LAS

本文介绍了自然语言处理中的句法分析模型评价标准UAS(未加标签依存关系准确率)和LAS(加标签依存关系准确率)。UAS仅关注依赖节点的匹配,而LAS则要求节点及其关系均正确。通过实例解释了UAS和LAS的计算方法,并探讨了它们在dependency parsing中的应用。同时,提到了在constituent parsing中使用F1分数进行评估。文章还分享了实际模型训练中使用UAS/LAS的例子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、UAS/LAS解释

NLP中常见的树结构有两种,一种是Dependency Tree即依存树,另一种是Constituency Tree(即短语结构树,为了提高准确率,Constituency Tree往往以二叉形式给出)。

UAS/LAS这是依赖树解析的评价指标,把算法标的依赖树的边和标准答案对比,标对的边的百分比就是准确率。
论文参考:https://aclanthology.org/K15-1033.pdf
相关原理学习资料PDF/PPT下载参考:http://web.stanford.edu/~jurafsky/NLPCourseraSlides.html
在这里插入图片描述

  • UAS:仅仅要求边的两个顶点标对。
  • LAS:要求边的顶点和关系都标对。

2、计算并评估nlp模型

在d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码杀手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值