Tensorflow学习笔记——tf.reduce_XXX()系

tf.reduce_sum()

tf.reduce_sum()可以理解为压缩求和,用于降维。
例子:

# 'x' is [[1, 1, 1]

#         [1, 1, 1]]

#求和

tf.reduce_sum(x) ==> 6

#按列求和

tf.reduce_sum(x, 0) ==> [2, 2, 2]

#按行求和

tf.reduce_sum(x, 1) ==> [3, 3]

#按照行的维度求和

tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]

#行列求和
tf.reduce_sum(x, [0, 1]) ==> 6 

Reference:
https://blog.csdn.net/arjick/article/details/78415675

tf.reduce_mean()

tf.reduce_mean()用于计算tensor沿着指定数轴上的平均值,主要用作降维或者计算tensor的平均值。

tf.reduce_mean(input_tensor,            #输入的待降维的tensor
			   axis=None,				#指定的轴,如果不指定,则计算所有元素的均值
			   keep_dims=False,			#是否降低维度,设置为True,输出的结果保持输入tensor的形状,设置为False,输出结果会降低维度
			   name=None,				#操作的名称
			   reduction_indices=None)  #在以前的版本中用来指定轴,已弃用

例子:

import tensorflow as tf

x = [[1, 2, 3],
	 [1, 2, 3]]
xx = tf.cast(x, tf.float32)

mean_all = tf.reduce_mean(xx, keep_dims=False)
mean_0 = tf.reduce_mean(xx, axis=0, keep_dims=False)
mean_1 = tf.reduce_mean(xx, axis=1, keep_dims=False)

with tf.Session() as sess:
	m_a , m_0, m_1 = sess.run([mean_all, mean_0, mean_1])

print(m_a)
print(m_0)
print(m_1)

输出:

[[2.]]
[[1., 2., 3.]]
[[2.], [2.]]

tf.reduce_max()

tf.reduce_all()

tf.reduce_any()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值