GAN在图像增强中的应用实战指南

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:图像增强技术通过算法改善图像质量,GAN作为一种生成对抗网络,在此领域具有重要应用。通过生成器和判别器的对抗性训练,GAN可以生成逼真图像、修复低质量图像、扩增数据集并进行风格迁移。本项目将介绍如何使用Python及其相关库实现GAN图像增强,包括模型的构建、训练和评估。通过项目案例学习,你可以掌握GAN在图像增强中的实际应用,提高图像处理和深度学习的技能。 使用GAN的图像增强

1. 图像增强技术基础

图像增强技术是数字图像处理领域的一个重要方向,旨在提升图像质量,改善视觉效果,或为后续图像分析任务做准备。在这一章节中,我们将简要概述图像增强的基本概念,探讨其在现代技术中的应用,并介绍一些核心的技术和算法。

1.1 图像增强的定义和目的

图像增强,顾名思义,是指通过一系列算法和技术手段,提高图像在视觉上的质量,使之更适合于人眼观察或机器分析。其主要目的是为了改善图像的某些特性,比如对比度、亮度、清晰度等,使得图像中的重要信息更容易被人类或计算机系统识别和处理。

1.2 图像增强的常见方法

图像增强可以通过多种方法实现,包括但不限于以下几种:

  • 直方图均衡化 :改善图像的对比度,使得图像的亮度分布更加均匀。
  • 滤波处理 :使用各种滤波器去除图像噪声,平滑图像或增强边缘细节。
  • 锐化技术 :强化图像的边缘信息,提高图像的清晰度和细节可见度。

通过这些方法的应用,图像增强技术不仅在消费电子产品中得到广泛应用,还在医学成像、卫星遥感和安全监控等领域中扮演着不可或缺的角色。这些技术的持续发展和优化,不断推动着图像增强技术的进步,使其能够更好地服务于现代社会的多样化需求。

2. 生成对抗网络(GANs)概念与组成

2.1 GANs的基本概念

2.1.1 GANs的历史和理论基础

生成对抗网络(GANs)由Ian Goodfellow在2014年提出,它是一种深度学习框架,属于无监督学习的范畴。其核心思想来源于博弈论中的零和游戏,即两个模型(生成器Generator和判别器Discriminator)通过不断的对抗和学习来提升自身的性能。

生成器负责产生尽可能接近真实数据的合成数据,而判别器则尝试区分真实数据和生成器产生的数据。这种对立关系推动两个模型不断进步,最终使得生成器能够生成几乎与真实数据无法区分的假数据。

理论上,GANs通过对抗过程能够学习到数据的复杂分布,因此可以被用于图像增强、数据生成、无监督特征学习等多种任务。与传统的机器学习模型不同,GANs不需要对数据进行预定义的假设,其学习得到的数据表示比传统方法更具有表达力。

2.1.2 GANs与其他机器学习模型的对比

与传统的监督学习模型相比,GANs最大的优势在于它的无监督特性。在传统的监督学习中,模型通常依赖于大量的标注数据进行训练,这不仅耗时耗力,而且在某些领域(如医学图像分析)中获取高质量的标注数据非常困难。而GANs只需要未标注的数据,通过生成器和判别器的对抗过程,就能够学习到数据的内在结构和分布。

另外,GANs也不同于变分自编码器(VAE)等其他生成模型。VAE是通过编码器将数据编码到潜在空间,并通过解码器在潜在空间生成数据。VAE强调的是数据在潜在空间的分布,而GANs则强调的是生成数据的质量。GANs更擅长生成高分辨率的、细节丰富的图像。

2.2 GANs的组成:生成器与判别器

2.2.1 生成器的作用与结构设计

生成器(Generator)是GANs中负责数据生成的部分,其目标是生成尽可能逼真、高质量的数据。为了实现这一目标,生成器通常采用深度神经网络,并通过多层变换将随机噪声向量转换为逼真的数据样本。

典型的生成器网络结构包括卷积神经网络(CNN)和全连接网络。在图像生成中,常用的生成器结构是反卷积神经网络(也称为转置卷积网络),它可以将低维噪声向量映射到高维图像空间,并通过学习数据的统计特性来生成高质量的图像。

生成器的结构设计是整个GANs设计中的关键环节,它不仅需要具备强大的特征提取和表示能力,还必须能够从噪声中捕获数据的潜在结构。为了增强生成器的表现力,通常会引入深度网络结构如残差网络(ResNet)的跳跃连接或者使用条件生成器来控制生成的样本。

import torch.nn as nn

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.main = nn.Sequential(
            # input is Z, going into a convolution
            nn.ConvTranspose2d(100, 512, 4, 1, 0, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            # state size. 512 x 4 x 4
            nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(True),
            # state size. 256 x 8 x 8
            # ... more layers
            nn.ConvTranspose2d(64, 3, 4, 2, 1, bias=False),
            nn.Tanh()
            # state size. 3 x 32 x 32
        )

    def forward(self, input):
        return self.main(input)

在上述代码中,我们定义了一个简单的生成器网络,它由一系列的反卷积层组成,并通过 nn.ConvTranspose2d 实现图像尺寸的上采样。代码中的 nn.BatchNorm2d nn.ReLU 表示批量归一化和ReLU激活函数,它们都对训练深层网络至关重要。最后的 nn.Tanh 确保输出值在[-1,1]范围内,以符合输入数据的分布。

2.2.2 判别器的作用与结构设计

判别器(Discriminator)在GANs中的作用是区分生成器产生的数据与真实数据。它的结构通常也是一个深度神经网络,最简单的形式是多层感知器(MLP),但在图像任务中经常使用卷积神经网络(CNN)。

判别器需要能够捕捉图像中的细微差异,因此通常会使用具有深层和多层次结构的CNN,以便能够从数据中提取更抽象和复杂的特征。判别器的一个重要设计方面是必须能够处理不同大小的输入图像,因此通常会在网络的末尾添加全连接层以生成最终的分类结果。

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.main = nn.Sequential(
            # input is 3 x 32 x 32
            nn.Conv2d(3, 64, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. 64 x 16 x 16
            nn.Conv2d(64, 128, 4, 2, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. 128 x 8 x 8
            # ... more layers
            nn.Conv2d(1024, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()
        )

    def forward(self, input):
        return self.main(input).view(-1, 1).squeeze(1)

在判别器的代码中,我们使用了多层卷积结构,每个卷积层后面跟随一个 LeakyReLU 激活函数。 LeakyReLU 允许一小部分负梯度流过,这有助于缓解梯度消失的问题。卷积层通过减少图像尺寸和增加通道数来提取特征,最后使用 nn.Sigmoid 产生一个介于0和1之间的数值,代表输入图像为真或假的概率。

2.2.3 生成器与判别器的协同工作原理

在GANs训练过程中,生成器和判别器是协同工作的。生成器尝试产生越来越逼真的图像,以欺骗判别器;而判别器则试图提高自己的能力,以更好地识别出生成器产生的图像和真实图像之间的差异。

这种对抗性的训练过程可以通过一个极小极大博弈(minimax game)来描述,生成器的目标是最大化判别器错误识别的概率,而判别器的目标是最小化其预测误差。数学上,这可以表示为以下优化问题:

min_G max_D V(D, G) = E_x∼p_data(x)[log D(x)] + E_z∼p_z(z)[log(1 - D(G(z)))]

其中, V(D, G) 是价值函数, D 代表判别器, G 代表生成器。 p_data(x) 是真实数据的分布, p_z(z) 是生成器输入的噪声分布。 E_x∼p_data(x)[log D(x)] 是判别器能正确识别出真实数据的概率, E_z∼p_z(z)[log(1 - D(G(z)))] 是生成器能成功欺骗判别器的概率。

通过迭代的优化过程,判别器和生成器逐步提升自己的性能,直到达到均衡状态,即判别器无法区分生成的图像和真实图像,此时GANs训练达到纳什均衡。达到这种均衡状态的模型具有高度的实用性,可以应用于各种图像增强任务中。

3. GANs在图像增强中的应用实例

3.1 图像超分辨率

3.1.1 超分辨率的重要性与应用

在数字化时代,图像的高分辨率对于视觉体验和信息精确性至关重要。超分辨率技术的目的是从低分辨率图像中重建高分辨率图像,从而提高图像的视觉质量。这种技术广泛应用于卫星图像处理、医学成像、视频监控、数字摄影以及数字娱乐行业。超分辨率不仅可以改善现有图像的外观,还能用于从压缩数据中恢复丢失的细节,是图像增强领域一个不断发展的分支。

3.1.2 基于GAN的超分辨率技术实现

生成对抗网络(GAN)在图像超分辨率方面表现出了显著的能力,尤其是在深度学习领域。使用GAN实现超分辨率的主要思想是训练一个生成器网络,使其能够从低分辨率图像中学习并生成高分辨率图像。与此同时,判别器网络负责评估生成的图像与实际高分辨率图像之间的差距,并指导生成器改进其输出。

代码块展示了一个简单的基于GAN的超分辨率网络训练过程,使用了生成器和判别器网络的伪代码:

# 生成器网络伪代码
def generator(input_image):
    # 网络层堆叠以生成高分辨率图像
    # ...
    return generated_image

# 判别器网络伪代码
def discriminator(image):
    # 网络层堆叠以区分真实图像与生成图像
    # ...
    return probability_of_real

# 训练过程
for epoch in range(num_epochs):
    for image_batch in training_data:
        # 训练判别器
        real_images = get_real_images(image_batch)
        generated_images = generator(image_batch)
        discriminator_loss = train_discriminator(real_images, generated_images)
        # 训练生成器
        generated_images = generator(image_batch)
        generator_loss = train_generator(discriminator(generated_images))
    # 每隔几个epoch进行图像重建和保存
    if epoch % save_interval == 0:
        save_image(generated_images, epoch)

在实际应用中,该过程涉及的网络结构可能更加复杂,包括卷积层、反卷积层、跳跃连接等,但上述代码段提供了一个基本的训练流程。

3.1.3 超分辨率的优化策略

超分辨率优化策略的实施需要对网络架构进行多次调整和优化。例如,可以引入残差连接来帮助网络学习图像中的细节,或者利用注意力机制来引导网络专注于图像中的重要部分。优化时还需要关注损失函数的选择,比如结合内容损失和对抗损失以达到最佳效果。在超分辨率模型的训练过程中,对于训练数据的预处理和后处理同样重要,需要精心设计来达到最好的图像恢复效果。

3.2 图像去噪

3.2.1 噪声对图像质量的影响

噪声是图像处理中常见的问题,可以来源于多种不同的原因,如传感器噪声、数据传输错误以及压缩过程中的质量损失。图像噪声严重时会使得图像信息变得模糊不清,影响视觉效果和后续分析。因此,图像去噪对于改善图像质量至关重要。

3.2.2 GANs用于图像去噪的实践

利用GAN进行图像去噪通常涉及到一个去噪生成器和一个判别器。去噪生成器负责从带有噪声的图像中移除噪声,恢复出更清晰的图像,而判别器则评估生成图像的逼真度。通过这种对抗性训练,生成器能够学会在去除噪声的同时保留图像的有用特征。

代码块展示了一个基于GAN进行图像去噪的模型结构:

# 去噪生成器伪代码
def denoising_generator(noisy_image):
    # 去噪生成器网络结构
    # ...
    return denoised_image

# 判别器伪代码
def discriminator(image):
    # 判别器网络结构,用于区分图像是否经过去噪处理
    # ...
    return probability_of_real

# 训练过程
for epoch in range(num_epochs):
    for noisy_image_batch, clean_image_batch in training_data:
        # 训练判别器
        real_images = clean_image_batch
        generated_images = denoising_generator(noisy_image_batch)
        discriminator_loss = train_discriminator(real_images, generated_images)
        # 训练生成器
        generated_images = denoising_generator(noisy_image_batch)
        generator_loss = train_generator(discriminator(generated_images))
    # 每隔几个epoch进行图像去噪结果保存
    if epoch % save_interval == 0:
        save_images(denoising_generator(noisy_image_batch), epoch)

在应用GAN进行图像去噪时,可能还需要通过数据增强和模型正则化等策略来提高模型对噪声的鲁棒性和去噪效果。

3.3 图像色彩增强

3.3.1 色彩增强的需求背景

色彩增强旨在提升图像中色彩的饱和度、对比度和清晰度。这对于数字成像和印刷领域尤其重要,因为它们直接影响视觉效果和图像的情感表达。色彩增强通常涉及调整图像的色调、亮度和对比度等参数,以实现最佳的视觉呈现。

3.3.2 GANs在色彩增强中的应用案例

GANs在图像色彩增强中的应用也日益增多,尤其是在处理光照条件差和色彩不均的图像时。通过训练GANs中的生成器网络去学习色彩增强的规则,可以实现对图像色彩进行非线性调整,从而达到增强效果。判别器则用于确保色彩增强后的图像在真实感和视觉吸引力上达到预期目标。

代码块展示了色彩增强模型的伪代码:

# 色彩增强生成器伪代码
def color_enhancement_generator(input_image):
    # 颜色增强生成器的网络结构
    # ...
    return enhanced_image

# 判别器伪代码
def discriminator(image):
    # 判别器的网络结构,用于区分图像是否经过色彩增强处理
    # ...
    return probability_of_real

# 训练过程
for epoch in range(num_epochs):
    for image_batch in training_data:
        # 训练判别器
        real_images = get_real_images(image_batch)
        enhanced_images = color_enhancement_generator(image_batch)
        discriminator_loss = train_discriminator(real_images, enhanced_images)
        # 训练生成器
        enhanced_images = color_enhancement_generator(image_batch)
        generator_loss = train_generator(discriminator(enhanced_images))
    # 每隔几个epoch进行色彩增强结果保存
    if epoch % save_interval == 0:
        save_images(color_enhancement_generator(image_batch), epoch)

色彩增强的优化过程需要考虑到色彩理论以及人类视觉感知,确保色彩增强后的图像在色彩上既有吸引力又保持真实感。

通过这些实例,我们可以看出,GANs在图像增强应用中不仅仅是一个简单的工具,而是一个可以进行复杂图像处理的智能系统。接下来的章节将深入探讨图像增强技术的编程实践,揭示如何在实际项目中应用这些理论知识。

4. 图像增强技术的编程实践

4.1 Python在图像增强与深度学习中的角色

4.1.1 Python语言的优势与应用领域

Python因其简洁的语法、丰富的库支持和强大的社区资源,成为数据科学、机器学习以及深度学习等领域的首选编程语言。对于图像增强技术,Python同样发挥了巨大作用。一方面,它使得研究者和开发者可以快速实现复杂算法并进行测试。另一方面,其广泛的图像处理库,如OpenCV、Pillow和matplotlib等,极大地方便了图像操作和结果展示,进而加速了图像增强技术的研究和应用。

4.1.2 Python在图像处理库中的集成

Python社区的丰富图像处理库,使其成为实现图像增强项目的理想选择。OpenCV(Open Source Computer Vision Library)是一个专注于实时计算机视觉的跨平台函数库,提供了图像处理、特征提取、物体检测等多种功能。Pillow则是PIL(Python Imaging Library)的分支,它提供了更为丰富的图像处理功能。通过这些库,Python不仅能够处理图像数据,还能利用各种算法对图像进行增强。

4.2 使用TensorFlow或PyTorch框架

4.2.1 TensorFlow和PyTorch框架对比

TensorFlow和PyTorch是目前最流行的深度学习框架。TensorFlow由Google开发,它的生态强大,社区支持广泛,尤其在生产环境中应用广泛。而PyTorch由Facebook开发,其动态计算图特性为研究者提供了灵活性。对于图像增强这样的实验性项目,PyTorch的快速原型设计能力更加吸引人。根据项目需求和开发者的熟悉度,两者各有优势。

4.2.2 搭建GANs模型的基础步骤

构建GANs模型需要多个步骤,首先是定义生成器和判别器的架构,其次是设置损失函数,最后是训练网络直到收敛。以下是搭建GANs模型的基础步骤:

# 伪代码:搭建GANs模型的基础步骤
import tensorflow as tf
from tensorflow.keras import layers

# 定义生成器模型
def build_generator():
    model = tf.keras.Sequential()
    # 添加层
    # ...
    return model

# 定义判别器模型
def build_discriminator():
    model = tf.keras.Sequential()
    # 添加层
    # ...
    return model

# 编译判别器
discriminator = build_discriminator()
***pile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam())

# 编译生成器
generator = build_generator()

# 使用生成器和判别器构建GANs模型
# ...

# 训练模型
# ...

4.3 图像处理库PIL和OpenCV的使用

4.3.1 PIL库的基本操作与图像处理功能

PIL库提供了众多图像处理的操作,包括但不限于图像的打开、保存、裁剪、旋转、缩放、滤波和颜色转换等。它能够处理多种图像格式,并为图像增强提供了坚实的基础。以下是使用PIL库进行基本图像处理的一个例子:

from PIL import Image

# 打开一张图片
image = Image.open("path/to/image.jpg")

# 图片旋转90度
rotated_image = image.rotate(90)

# 裁剪图片的一部分
cropped_image = image.crop((100, 100, 200, 200))

# 保存图片
cropped_image.save("path/to/save/cropped_image.jpg")

4.3.2 OpenCV的图像处理进阶应用

OpenCV是一个更加专业的图像处理库,提供了强大的图像和视频分析功能。它不仅包括了PIL的基本功能,还支持更为高级的操作,比如特征检测、物体追踪、深度学习模块等。以下是一个使用OpenCV进行图像处理的示例:

import cv2

# 加载图片
image = cv2.imread("path/to/image.jpg")

# 转换为灰度图
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 使用阈值进行二值化
_, binary_image = cv2.threshold(gray_image, 128, 255, cv2.THRESH_BINARY)

# 展示结果
cv2.imshow("Binary Image", binary_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

4.4 数据可视化工具matplotlib

4.4.1 matplotlib的安装与基础使用

matplotlib是一个用于生成二维图表的库,它能够将数据以图形方式展示,是数据可视化的重要工具。安装matplotlib非常简单,使用pip即可:

pip install matplotlib

使用matplotlib展示图像增强的结果,可以直观地看到增强前后的差异,这有助于开发者评估算法效果。以下是如何使用matplotlib展示一张图像的示例:

import matplotlib.pyplot as plt

# 假设original_image 和 enhanced_image 已经加载完毕

# 展示原图和增强后的图像
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.imshow(original_image, cmap='gray')
plt.title('Original Image')

plt.subplot(1, 2, 2)
plt.imshow(enhanced_image, cmap='gray')
plt.title('Enhanced Image')

plt.show()

4.4.2 用matplotlib进行结果展示与分析

matplotlib不仅能够展示单张图像,还可以进行图像序列的展示,这对于展示图像增强过程中的迭代结果非常有用。开发者可以使用matplotlib制作动画来展示GANs模型的训练过程,这对于模型的调试和优化有很大的帮助。

# 生成图像增强过程的动画
import matplotlib.animation as animation

fig = plt.figure()
ims = []

# 假设enhanced_images是一个包含多个增强阶段图像的列表

for i in enhanced_images:
    im = plt.imshow(i, animated=True)
    ims.append([im])

ani = animation.ArtistAnimation(fig, ims, interval=50, blit=True, repeat_delay=1000)
plt.show()

通过以上方法,可以将GANs在图像增强中的应用实例化为可操作的步骤和可视化结果,为进一步的项目开发和优化提供依据。

5. 图像增强项目流程概述

在本章节中,我们将深入探讨一个图像增强项目的流程,特别是如何利用深度学习框架Keras来实施GANs模型,并确保项目的顺利规划与执行。我们将从项目规划的要点开始,然后讨论实施中可能遇到的问题以及解决和优化策略。

5.1 Keras高级接口应用

5.1.1 Keras的基本架构和特点

Keras是一个开源的神经网络库,其设计目标是实现快速实验。Keras提供了一种高层次的神经网络API,能够以TensorFlow、CNTK或Theano作为后端运行。Keras的主要特点包括:

  • 模块化 :模型由一系列构建模块组成,易于扩展。
  • 易扩展性 :能够方便地扩展新模块,如层、损失函数等。
  • 最小化的工作量 :库的设计鼓励最小的编程量。
  • 多后端支持 :可以在不同的深度学习引擎上运行。

Keras特别适合快速实验,它在研究和开发上非常有效,有助于快速设计和测试新的想法。

5.1.2 利用Keras实现GANs模型的快速开发

在图像增强项目中,我们常常需要实现复杂的GANs模型。使用Keras,可以通过定义生成器和判别器模块,并利用其高级API来快速搭建模型。以下是一个简单的GANs模型实现步骤:

from keras.models import Sequential
from keras.layers import Dense, Flatten
from keras.layers.advanced_activations import LeakyReLU

# 定义生成器模型
def build_generator(z_dim):
    model = Sequential()
    model.add(Dense(128, input_dim=z_dim))
    model.add(LeakyReLU(alpha=0.01))
    model.add(Dense(28*28*1, activation='tanh'))
    model.add(Reshape((28, 28, 1)))
    return model

# 定义判别器模型
def build_discriminator(img_shape):
    model = Sequential()
    model.add(Flatten(input_shape=img_shape))
    model.add(Dense(128))
    model.add(LeakyReLU(alpha=0.01))
    model.add(Dense(1, activation='sigmoid'))
    return model

# 编译并运行模型
generator = build_generator(z_dim)
discriminator = build_discriminator((28, 28, 1))

5.2 图像增强项目的规划与实施

5.2.1 图像增强项目的规划要点

在图像增强项目的规划阶段,关键要点包括:

  • 目标定义 :明确项目目标和预期结果。
  • 数据收集与预处理 :获取必要数据并进行标准化和增强处理。
  • 模型选择 :根据任务需求选择合适的模型架构。
  • 训练计划 :规划模型训练的参数设置,如批大小、学习率、迭代次数等。
  • 性能评估 :确定评估标准和测试方法。

5.2.2 实际开发中的问题解决与优化策略

在图像增强项目的实际开发过程中,可能会遇到性能瓶颈或模型表现不佳等问题。一些优化策略包括:

  • 数据增强 :通过旋转、缩放、裁剪等手段增加训练数据的多样性。
  • 超参数调整 :使用网格搜索、随机搜索或贝叶斯优化等方法来优化模型超参数。
  • 正则化技术 :应用dropout、L1/L2正则化以防止过拟合。
  • 模型集成 :结合多个模型的预测结果以提高性能。

针对图像超分辨率、去噪、色彩增强等具体任务,可以采用特定的优化方法,例如使用GANs特有的损失函数,例如对抗损失和感知损失,来进一步提升图像的质量。

在本章中,我们了解了如何利用Keras高效构建和实施GANs模型,以及如何规划和优化图像增强项目。通过本章节内容的深入学习,读者将能够更好地理解如何将理论知识应用于实际项目中,并有效解决开发过程中遇到的问题。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:图像增强技术通过算法改善图像质量,GAN作为一种生成对抗网络,在此领域具有重要应用。通过生成器和判别器的对抗性训练,GAN可以生成逼真图像、修复低质量图像、扩增数据集并进行风格迁移。本项目将介绍如何使用Python及其相关库实现GAN图像增强,包括模型的构建、训练和评估。通过项目案例学习,你可以掌握GAN在图像增强中的实际应用,提高图像处理和深度学习的技能。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值