如何根据PPI网络进一步挖掘信息

本文介绍了如何利用PPI网络进行深入的数据挖掘,包括度、最短路径、紧密度中心性、介间中心性、密度和聚类系数等关键概念。这些网络分析方法有助于理解蛋白质相互作用网络的结构和重要节点,进而揭示生物学意义的模块和蛋白质复合体。
摘要由CSDN通过智能技术生成

欢迎关注微信公众号《生信修炼手册》!

从数据库中得到蛋白质的相互作用信息之后,我们可以构建蛋白质间的相互作用网络,但是这个网络是非常复杂的,节点和连线的个数很多,如果从整体上看,很难挖掘出任何有生物学价值的信息,所以我们需要借助一些算法来深入挖掘。

随着各个数据库中信息通量的不断提高,基于网络的分析方法越来越受欢迎,比如我们常见的蛋白质相互网络,基因共表达网络,转录因子调控网络,pathway网络等等,为了更好的理解后续的数据挖掘算法,首选要对网路的属性有一些基本了解。

从数据结构上看,我们所说的网络network是属于图Graph这一数据结构的,网络是一种比较直观的描述,就是点和点之间的连线,在算法上,为了准确描述一个网络,通常借助于邻接矩阵,示意如下
在这里插入图片描述
在网络中,根据节点的连线是否具有方向,可以划分为有向图和无向图两类,无向图中被一条线连接的两个节点其作用是相互的,比如基因共表达网络,两个基因间互为共表达基因,而有向图中,连线是有方向性的,比如转录因子调控网络,转录因子调控基因,所以连线由转录因子指向某个基因。

无向图的描述为undirected graph, 有向图的描述为directed graph。PPI网络由于蛋白的作用是相互的,所以通常归类为无向图。

除了连线的方向性,根据连线对应的值,可以将网络图分为加权和非加权两种, 以基因共表达网络

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值