RNA 14. SCI 文章中差异表达基因之 蛋白互作网络 (PPI)

蛋白互作网络分析同样也是 SCI 文章中出现频率最高的分析方法,下面就给大家梳理一下流程!

另外大家都是私信我,现在有需要学习生信等问题可以扫码进群交流,如下:

图片

前言

蛋白质互作网络(PPI, Protein-Protein Interaction Networks)是由蛋白通过彼此之间的相互作用构成,来参与生物信号传递、基因表达调节、能量和物质代谢及细胞周期调控等生命过程的各个环节。系统分析大量蛋白在生物系统中的相互作用关系,对了解生物系统中蛋白质的工作原理,了解疾病等特殊生理状态下生物信号和能量物质代谢的反应机制,以及了解蛋白之间的功能联系都有重要意义。

蛋白互作分析的工具包括 string 数据库也是一个在线工具,另外就是经典的网络作图软件 Cytoscape。

实例解析

我们就根据 RNA 12. SCI 文章中肿瘤免疫浸润计算方法之 CIBERSORT 结果来学习怎么绘制蛋白互作网络图。

1 数据读取

读取表达数据,由于我们挑选的都是免疫细胞,所以更加方便作图,选取其中的10个基因,如下:

exp<-read.table("exp.txt",header=T,check.names = F)
exp[1:5,1:3]
#SYMBOL TCGA-3L-AA1B-01A-11R-A37K-07 TCGA-4N-A93T-01A-11R-A37K-07
#1 DBNDD1                  145.7848372                     932.6654
#2  HSPB6                  463.5507914                     125.3295
#3   PDK4                  199.3329095                     223.2314
#4  ABCB5                    0.7485274                       0.0000
#5 PRSS22                  441.2341966                    1428.1244

exp$SYMBOL[1:10]
#[1] "DBNDD1"    "HSPB6"     "PDK4"      "ABCB5"     "PRSS22"    "ASB4"      "TMEM132A" 
#[8] "TNFRSF12A" "DLX6"      "CCL26"

2 STRING 数据库

string (vision 11.5) 数据库是一个搜索已知蛋白质之间和预测蛋白质之间相互作用的数据库,该数据库可应用于2031个物种,包含960万种蛋白和1380万种蛋白质之间的相互作用。

STRING https://cn.string-db.org

图片


在官网的 help 里面有详细的说明,如下:

help https://cn.string-db.org/cgi/help?sessionId=bfsfWQPO6oix

Starting Point

输入文件格式必须在 STRING 起始页使用输入表单,左侧包括输入的格式,可以是蛋白名称,或者是序列,当然可以是单个也可以是多个蛋白,我们输入1个 m6A基因 FTO, 之后选择 Select, 之后在点击 SEARCH,如下:

图片

这样我们就获得了与 FTO 相关的蛋白,如下:

图片

如果以上图作为差异蛋白互作网络不够美观,也并不是所有差异蛋白均可形成互作网络,因此需将分析结果导出使用Cytoscape绘图。

点击Exports,选择…as simple tabular text output,点击download:

图片

Excel表格打开保存好的结果,其中包括节点信息、node1_string_internal_id与combined_score等诸多信息:

图片

点击某个蛋白小球会得到关于这个蛋白的信息以及蛋白结构,非常好用,自己研究吧!

图片

接下来我们就利用 Cytoscape 做出更美观的图形。

3 Cytoscape

Cytoscape是一款免费图形化显示网络并进行分析和编辑的软件,用起来非常方便,最重要的是能够

图片

其最新版本为 Cytoscape3.9.1,下载地址为:

Cytoscape https://cytoscape.org/

图片

使用过程中如遇到不会,可以直接到 cytoscape 官网上查看说明,网页上有详细的使用说明:

manual https://manual.cytoscape.org/en/stable/

导入互作网络

打开软,我们看到该软件提供了一些例子,如下:

图片

点击下图Import Networks from File System,导入Exports处下载好的数据,点击OK,导入数据完成,如下:

图片

导入完成后得到可形成互作关系的差异蛋白网络,不能形成互作关系的单个差异蛋白不再出现:

图片

设置节点间连接线的粗细

combined_score表示数据的支持度,combined_score越粗两种蛋白间互作关系越强,默认筛选阈值为0.4。

节点Edges的粗细由combined_score渐变调整,选择Tool里的Network Analysis工具中的Generate Style from Statistics:

图片

这时我们可以对蛋白之间的关系执行一系列的分析,如下:

图片

设置参数,根据需求自行设置,怎么好看怎么设置,如下:

图片

蛋白互作这块我们就简单说下,具体一些细节性的设置软件包本身非常好用,并且带有说明,自行设置即可!

关注公众号,每日更新,扫码进群交流不停歇,马上就出视频版,关注我,您最佳的选择!

图片

桓峰基因

生物信息分析,SCI文章撰写及生物信息基础知识学习:R语言学习,perl基础编程,linux系统命令,Python遇见更好的你

52篇原创内容

公众号

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值