Lyapunov意义下的稳定性定义


如图所示的三个曲面,小球均处于平衡点,考虑其受扰动作用,自平衡点偏离后的系统响应。

在这里插入图片描述

平衡点a:受扰动作用使得小球偏离原平衡点,并且使得小球达到另一个平衡点,小球的状态是自由响应且有界。
在这里插入图片描述

平衡点b:考虑有摩擦,小球绕原点平衡点将产生衰减振荡,小球的状态是自由响应且有界的,并且将最终返回自由平衡点。
在这里插入图片描述

平衡点c:倘若受扰动作用使得小球偏离原平衡点,那么小球不一定能够达到下一个平衡点,那么就称小求的状态是自由响应且无界的。

1.稳定

1.1定义

设系统的初始状态 x 0 x_0 x0处在状态空间中,位于以平衡状态 x e x_e xe为球心,半径为 δ \delta δ的闭球域(Spherical Domain) S ( δ ) S(\delta) S(δ)内,即
∥ x 0 − x e ∥ ≤ δ , t ≥ t 0 \lVert x_0-x_e \rVert \le \delta ,t\ge t_0 x0xeδ,tt0
若系统由初始状态 x 0 x_0 x0出发的系统自由响应 x ( t ; x(t; x(t; x 0 x_0 x0 , , , t 0 t_0 t0 ) ) ) t → ∞ t\rightarrow\infty t的过程中以平衡状态 x e x_e xe为球心,半径为 ε \varepsilon ε的闭球域 S ( ε ) S(\varepsilon) S(ε)内,即
∥ x ( t ; x 0 , t 0 ) − x e ∥ ≤ ε , t ≥ t 0 \lVert x\left( t;x_0,t_0 \right) -x_e \rVert \le \varepsilon ,t\ge t_0 x(t;x0,t0)xeε,tt0
则称该动力学系统的平衡状态 x e x_e xe是Lyapunov意义下稳定的,或者称系统具有Lyapunov意义下的稳定。
一般地,实数 δ \delta δ ε \varepsilon ε有关,通常也和初始时刻 t 0 t_0 t0有关。如果 δ \delta δ的大小与 t 0 t_0 t0无关,则称 x x x是Lyapunov意义下的一致稳定(Uniformly Stable)。对于时变系统,一致稳定比稳定更具有实际意义。对于时不变系统,Lyapunov意义下的稳定与一致稳定等价。

1.2 Lyapunov稳定性定义的几何解释

以上定义意味着:在状态空间中,任意给一个以平衡状态 x e x_e xe为中心的球域 S ( ε ) S(\varepsilon) S(ε),无论多小,总能够找到一个以原点为中心的球域 S ( δ ) S(\delta) S(δ),使得任何从 S ( δ ) S(\delta) S(δ)出发的运动轨迹,都不超出 S ( ε ) S(\varepsilon) S(ε)。考虑二维空间,平衡态 x e x_e xe为坐标原点, S ( δ ) S(\delta) S(δ) S ( ε ) S(\varepsilon) S(ε)均为一个圆。
Lyapunov意义下的稳定只能保证系统受扰运动相对于平衡状态的有界性,不能保证系统受扰运动相对于平衡状态的渐近性。Lyapunov意义下的稳定性实质上就是工程意义下的临界不稳定。

2. 渐进稳定

2.1 定义

如果平衡状态 x e x_e xe不仅是Lyapunov稳定意义下稳定的,而且从球域 S ( δ ) S(\delta) S(δ)出发的任意解 x ( t ; x(t; x(t; x 0 x_0 x0 , , , t 0 t_0 t0 ) ) ),当 t → ∞ t\rightarrow\infty t的时,不仅不会超出球域 S ( ε ) S(\varepsilon) S(ε),而且最终收敛于平衡状态 x e x_e xe或者其邻域,即有 lim ⁡ t → ∞ ∥ x ( t ; x 0 , t 0 ) − x e ∥ → 0 \underset{t\rightarrow \infty}{\lim}\lVert x\left( t;x_0,t_0 \right) -x_e \rVert \rightarrow 0 tlimx(t;x0,t0)xe0
则称平衡状态 x e x_e xe是渐近稳定的(Asymptotically Stable)。其中球域 S ( δ ) S(\delta) S(δ)被称为平衡状态 x e = 0 x_e=0 xe=0的吸引域,表示位于其内的所有状态点都可被吸引到平衡状态 x e x_e xe的邻域。
同样的,如果 δ \delta δ的大小与 t 0 t_0 t0无关,则称 x x x是Lyapunov意义下的一致稳定(Uniformly Stable)。对于时变系统,一致稳定比稳定更具有实际意义。对于时不变系统,Lyapunov意义下的稳定与一致稳定等价。

2.2 几何含义

渐近稳定首先应该是Lyapunov意义下的稳定。工程上往往喜欢渐近稳定,因为希望干扰除去后,系统往往又回到原来的工作状态,这个状态正是设计系统时所期望的,也正是前面所说的平衡状态。
实际上,渐近稳定性比纯稳定性更重要。考虑到非线性系统的渐近稳定性是一个局部概念,所以简单的确定渐近稳定性并不意味着系统能够正常工作。通常有必要确定渐近稳定性的最大范围或吸引域,它是发生渐近稳定轨迹的那部分状态空间,也就是说,发生吸引域内的每一个轨迹都是渐近稳定的。

3. 大范围渐近稳定

无论是Lyapunov意义下的稳定、渐近稳定,都属于系统在平衡状态附件一小范围内的局部性质。因为系统只要在包围 x e x_e xe的小范围内,能找到 δ \delta δ ε \varepsilon ε满足定义中的条件即可。至于从 S ( δ ) S(\delta) S(δ)外出发的运动,却完全可以超出 S ( ε ) S(\varepsilon) S(ε)。因此,若为了满足稳定(渐近稳定)条件,初始状态 x 0 x_0 x0有一定的限制,则称系统是小范围稳定(渐近稳定),也称之为局部稳定(Locally Stable)(或局部渐近稳定)。
如果系统在任意初始条件下的解 x ( t ; x(t; x(t; x 0 x_0 x0 , , , t 0 t_0 t0 ) ) ),在 t → ∞ t\rightarrow\infty t的过程中,收敛于平衡态 x e x_e xe或者其邻域,则平衡状态 x e x_e xe不仅是渐近稳定的而且其范围包含整个状态空间,则称 x e x_e xe是大范围渐近稳定或者称全局渐近稳定的平衡状态。
大范围肩颈稳定的必要条件是:状态空间中系统中只有一个平衡状态。例如某系统的状态方程为:
x ˙ = A x , ∣ A ∣ ≠ 0 \dot{x}=Ax,\left| A \right|\ne 0 x˙=Ax,A=0
可知零状态必然是系统的平衡状态,而若零状态渐近稳定,因为它是唯一的孤立平衡状态,则必然是大范围渐近稳定的,可见,线性系统稳定性与初始条件无关。
从实用观点出发,仅仅判知系统是小范围稳定的,系统不一定能够正常工作,一旦实际存在的干扰,使得系统的初始状态偏离而超出 S ( δ ) S(\delta) S(δ)的范围,就会导致 x x x有可能不反回 x e x_e xe。因此,工程上对大范围的渐近稳定更加感兴趣。如果平衡状态不是大范围渐近稳定的,那么问题就转化为驱动渐近稳定的最大范围或吸引域,这通常非常困难。然而,对于所有的实际问题,如果能确定一个足够大的渐近稳定的吸引域,以致扰动不会超过它就可以了。对于线性定常系统,渐近稳定等价于大范围渐近稳定。但对于非线性系统,一般只考虑吸引域为有限的定范围的渐近稳定。

参考文献1


  1. 现代控制理论/张莲等编著.-2版.-北京:清华大学出版社,2016 ↩︎

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值