Lyapunov意义下的稳定性定义


如图所示的三个曲面,小球均处于平衡点,考虑其受扰动作用,自平衡点偏离后的系统响应。

在这里插入图片描述

平衡点a:受扰动作用使得小球偏离原平衡点,并且使得小球达到另一个平衡点,小球的状态是自由响应且有界。
在这里插入图片描述

平衡点b:考虑有摩擦,小球绕原点平衡点将产生衰减振荡,小球的状态是自由响应且有界的,并且将最终返回自由平衡点。
在这里插入图片描述

平衡点c:倘若受扰动作用使得小球偏离原平衡点,那么小球不一定能够达到下一个平衡点,那么就称小求的状态是自由响应且无界的。

1.稳定

1.1定义

设系统的初始状态 x 0 x_0 x0处在状态空间中,位于以平衡状态 x e x_e xe为球心,半径为 δ \delta δ的闭球域(Spherical Domain) S ( δ ) S(\delta) S(δ)内,即
∥ x 0 − x e ∥ ≤ δ , t ≥ t 0 \lVert x_0-x_e \rVert \le \delta ,t\ge t_0 x0xeδ,tt0
若系统由初始状态 x 0 x_0 x0出发的系统自由响应 x ( t ; x(t; x(t; x 0 x_0 x0 , , , t 0 t_0 t0 ) ) ) t → ∞ t\rightarrow\infty t的过程中以平衡状态 x e x_e xe

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值