输出调节基本概念1.1——有界性与稳定性的定义及判断

一、稳定性基本定义

1.1 稳定性

定义1(stable)平衡点x=0,在t_{0}时刻是稳定的,如果对于任意\epsilon > 0,存在一个常数\delta (t_{0},\epsilon )> 0,使得

                                             \left \| x(t_{0}) \right \|< \delta (t_{0},\epsilon )\Rightarrow \left \| x(t) \right \|< \epsilon ,\forall t\geq t_{0}
其中,x为系统状态向量。如果\delta (t_{0},\epsilon )=\delta (\epsilon ),即\delta与初始时刻无关,那么称该平衡点是一致稳定的。

                                                 

 
1.2 渐近稳定性

定义2(asymptotically stable):平衡点x=0,在t_{0}时刻是渐近稳定的,如果存在一个常数\delta > 0,使得

                                            \left \| x(t_{0}) \right \|< \delta\Rightarrow \lim_{t\rightarrow \infty }\left \| x(t) \right \|=0

                                                 


说明:对于定义1,\delta的选取应不大于给定常数\epsilon。而通常情况下,\delta远小于\epsilon。其实,稳定性的物理意义说明系统有个初始状态x(t_{0}),在某一输入的驱动下,系统从这一初始状态运动到末态x(t)。现在, 如果有扰动使系统的初始状态在\left \| x(t_{0}) \right \|< \delta的这一小范围内发生偏离,若系统的终态仍能回到给定的\left \| x(t) \right \|< \epsilon范围内,那么就说x=0这一点是稳定的。当然,初态能够偏离的范围\delta的大小与你给定的末态偏离范围\epsilon有关。渐进稳定首先是稳定的,并且当t趋于无穷时,若系统的初始状态在\left \| x(t_{0}) \right \|< \delta范围内,系统的终态都会回到零点。可见,渐进稳定比稳定对系统的要求要严格地多,前者要求系统的末态趋于一个点,而后者只需使末态在某个范围内;前者要求末态趋近的这一点必须是零点,后者只需使末态所在的范围是零点周围的一个区域。


二、有界性的基本定义

2.1 一致有界性

定义3(uniformly bounded, UB)系统微分方程的解为x,且x\left ( t_{0} \right )=x_{0},若系统一致有界,则对于某个\delta > 0,存在一个正常数d\left ( \delta \right )< \infty,使得对于所有的t> t_{0},都有
                                                                         \left \| x\left ( t_{0} \right ) \right \|< \delta \Rightarrow \left \| x\left ( t \right ) \right \|< d\left ( \delta \right )
成立。这里d可能与\delta有关,但与t_{0}一定无关(一致性)。

                                                              

物理含义:系统从初态出发,经过一段时间,末态总能稳点在某个给定的球域内。


2.2 最终一致有界

定义4(ultimately uniformly bounded, UUB)系统微分方程的解为x,且x\left ( t_{0} \right )=x_{0},若系统最终一致有界,则对于某个包含原点的集合W\subset R^{n},存在一个非负常数T\left ( x_{0} ,W\right )< \infty,使得对于所有t> t_{0}+T,都有 

                                                                              \left \| x\left ( t_{0} \right ) \right \|< \delta \Rightarrow x\left ( t \right )\in W

成立。这里W可能与x_{0}有关,但一定与t_{0}无关。

                                                            

物理意义:系统从初态出发,经过一段时间,末态总能回到原点附近某个给定的球域内。


说明:定义4中的集合W通常是用以原点为球心、\epsilon为半径的一个超球(hyper-ball)来描述的,即W=B(0,\epsilon )。如果\epsilon \geq d(\delta ),UUB就退化成UB。虽然在定义4中没有明确指出,但是UUB主要是指\epsilon很小的情况,它代表了一种比UB要求更严格的稳定性。UUB的物理意义也就是说,系统从初态出发,经过一段时间,末态总能回到原点附近某个给定的球域内。
 


参考文献:Khalil, Hassan K. "Nonlinear systems, 3rd." New Jewsey, Prentice Hall 9 (2002).


三、区别与联系

从左至右,从上到下依次表示稳定性、渐近稳定性、一致有界、最终一致有界。

                                                    

从图中可发现,一致稳定与一致有界类似,而一致渐进稳定和一致最终有界类似。上述两组概念都能描述系统的稳定性,那么何时用第一组概念?何时用第二组概念?

注意,Lypunov稳定性都是针对平衡点定义的。定义1、2中首先就说了系统的平衡点是原点,然后才陈述在什么条件下这个平衡点是稳定的。也就是说,用Lypunov理论讨论系统的稳定性时,实质讨论的是关于这一平衡点的稳定性,如果系统在这一平衡点处受到扰动,但仍能回复到指定的范围内,那么系统关于这一平衡点就是稳定的。

但是,对于一些包含未知扰动量的不确定系统,也就是在鲁棒控制(robust control)中讨论的一些系统,系统的平衡点是无法确定的,因此第一组中针对平衡点的定义对这些不确定系统(uncertain system)就变得毫无意义。因为系统在不确定量的扰动下,可能根本就没有平衡点。所以对这一类uncertain system稳定性的分析,就可以通过微分方程的解与原点的接近程度来描述。这样,就引出了第二组概念UB和UUB。也就是说,第二组概念是专门用来分析不确定系统的稳定性的。


总结

  1. 稳定和渐进稳定是描述具有平衡点的确定系统的稳定性的,讨论的是系统受到扰动后回复到平衡点的能力;
  2. UB和UUB是描述鲁棒控制中不确定系统的稳定性的,讨论的是微分方程的解与原点的接近程度;
  3. 渐进稳定要求系统的末态趋于零点,稳定只需使末态保持在某个范围内,且该范围远大于初态所约束的范围;
  4. UUB要求系统末态所在的超球半径远小于初态所在的超球半径,即UUB是比UB要求更严格的一种稳定性;
  5. 在实际中,UUB是不确定系统所能达到的最好的稳定性。

上述内容来源于CSDN博主「lala你好哇」的原创文章,原文链接:稳定&渐进稳定,一致有界&一致最终有界

四、有界性的判断条件

 

 

 

  • 9
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路漫求索_CUMT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值