机器人学基础-旋转变换
空间旋转矩阵中有九个元素,但是这九个元素满足六个约束方程,只有三个独立变量
ABX = [ AXB AYB AYB ] = [ R 11 R 12 R 13 R 21 R 22 R 23 R 31 R 32 R 33 ] \begin{bmatrix}R11 & R12 & R13 \\ R21 & R22&R23\\R31&R32&R33\\ \end{bmatrix} ⎣⎡R11R21R31R12R22R32R13R23R33⎦⎤;
其中每个元素满足:
AXB ⋅ \cdot ⋅ AXB = AYB ⋅ \cdot ⋅ AYB = AZB ⋅ \cdot ⋅ AZB = 1;
AXB ⋅ \cdot ⋅ AYB = AYB ⋅ \cdot ⋅ AZB = AZB ⋅ \cdot ⋅ AXB = 0;
一、绕固定轴x-y-z旋转(RPY角)
1-1运动过程
RPY角对应的旋转矩阵,这种描述方法与操作轴末端执行器坐标系的规定方法类似,如下图;
坐标系的运动方式:{B}的开始方位与坐标系{A}重合,首先使得{B}绕XA旋转 γ \gamma γ 角,在绕YA 转 β \beta β 角,最后绕 ZA转 α \alpha α 角。(白->黄->红->蓝)
1-2旋转矩阵计算
根据坐标系的变换关系,坐标系{B}相对于{A}的旋转矩阵为:注意这里需要右乘,相对于基坐标系而言
ABRxyz( γ \gamma γ , β \beta β, α \alpha α ) = R(ZA, α \alpha α) ⋅ \cdot ⋅ R(YA, β \beta β) ⋅ \cdot ⋅ R(XA, γ \gamma γ)
= [ c α − s α 0 s α c α 0 0 0 1 ] \begin{bmatrix} c \alpha & -s\alpha& 0 \\ s\alpha & c\alpha&0\\0&0&1\\ \end{bmatrix} ⎣⎡cαsα0−sαcα0001⎦⎤