1、简介
Loupe Browser是⼀款10xGenomics开发的交互式桌⾯应⽤程序,⽤于探索10x单细胞数据,可以用来找出感兴趣的细胞、找出显著差异表达的基因、鉴定细胞类型、探索细胞亚类和数据共享。缺点是Loupe Browser不支持进阶分析,需要更多个性化分析的零代码操作可参考:一文学会零代码单细胞分析
软件下载地址:https://www.10xgenomics.com/software
2、使用演示
2.1 导入数据
自行分析时导入的是cloupe.cloupe文件,这里用自带的AML数据(所以别问我要测试数据啦)进行演示:
进入软件分析后,界面主要由5个面板组成:
-
左边可以选择不同的聚类方法
-
上方split view可以进行拆分
-
上方Projection type可以选择t-SNE或者UMAP
-
上方右边分别是拖动模式(手形)、套索工具和笔刷都是用于选取细胞,橡皮是擦除选错的细胞
-
右上方的导出可以导出图片
2.2 差异分析
这个数据由AML、Normal1、Normal2组成,现根据样本ID进行差异分析。
点击Run differential ecpression
:
出现的3个选项:
a.To entire dataset:
为全选模式,即使只选择了3个样本中的2个,也会默认分析3个(所有)样本。
b.Between selected cluster(s) themselves:
局部模式,分析选中的样本。
c.Across multiple samples:
在不同样本之间对同一个分组进行这个样本间的一个差异比较,必须多样本才能使用。
分析结果如下,可以点击export进行导出,导出时可选择基因数量:
2.3 选择目的基因的两种方式(细胞注释)
a. 利用Features进行选择目的基因
例如搜索MS4A1
保存的时候可以对选出的细胞和分组进行命名:
在Clusters中得到了一个新的分组celltype:
对于一些错误的细胞(蓝框),可以用橡皮擦进行去除:
b. 直接导入基因表格
需要提前准备好基因列表,内容格式如下(.csv):
从Features-Create a new feature list上传基因列表:
上传后:
2.4 重新聚类
a.先在Clusters选中想要重新聚类的组别,例如这里选择Patient,再点击Reanalyze
b.会跳出新的分析页面,右边显示的是总的、剔除的和选中的细胞数,点击Next
c.UMI阈值设置,根据样本自行调整,点击Next
d.基因表达阈值设置,点击Next
e.设置线粒体UMI,选择参考基因是根据样本种类,人源或鼠源的则选择对应的,点击Next:
f.可以选择降维方式,t-SNE和UMAP,命名后点击Recluster,注意:PCA、t-SNE、UMAP的参数值可以在蓝色字体的Adjust reanalyze parameters (for advanced users)下去调整。
g.得到重新聚类的结果后即可以对其进行差异基因分析和细胞注释等
认真学完下面的内容,3~10分的SCI理应是囊中之物(当然也不要真的去水文章)
单细胞系列教程目录
单细胞数据分析系列教程:
B站视频,先看一遍视频再去看推送操作,建议至少看三遍:
https://www.bilibili.com/video/BV1S44y1b76Z/
本公众号单细胞相关资料都可以在这里订阅:
单细胞测序基础数据分析保姆级教程,代码部分整理在往期推送之中:
手把手教你做单细胞测序数据分析|5.细胞类型注释,从入门到入土
单细胞图片改造计划:
SCENIC转录因子分析:
SCENIC单细胞转录因子预测|5.step1+step2构建共表达网络与regulon
SCENIC单细胞转录因子预测|6.Step3 利用AUCell对Regulon评分
SCENIC单细胞转录因子预测|7.Step4 二元矩阵的计算与可视化
SCENIC单细胞转录因子预测|8.Step5 regulon聚类、分群、降维
上游fastq文件处理:
单细胞分析的最上游——处理Fastq文件:cellranger
单细胞分析的最上游——处理Fastq文件:dropseqRunner
Cellranger报错:Unable to distinguish between [SC5P-R2, SC3Pv2] ...
细胞通讯
B站连续播放起来比较方便:
https://www.bilibili.com/video/BV1Ab4y1W7qx?p=1
往期推送
拟时序分析
B站连续播放起来比较方便:
https://www.bilibili.com/video/BV1br4y1x7Hf?p=1
往期推送
单细胞测序数据进阶分析—《拟时序分析》5.初识monocle3
单细胞测序数据进阶分析—《拟时序分析》6.monocle3的降维、分群、聚类
单细胞测序数据进阶分析—《拟时序分析》7.monocle3的拟时序分析
scFAST系列
其他单细胞相关技术贴也在这里:
答读者问(十一)如何一次性读取一个目录下的cellranger输出文件?
给你安排一个懂生信的工具人(十):不学编程 零代码完成单细胞测序数据分析:Loupe Browser
答读者问 (十三)查看Seurat对象时的ERROR:type='text'
单细胞对象(数据格式)转换大全|2. h5ad转Seuratobj
答读者问 (十五)稀疏矩阵转matrix, as.matrix函数是下下策
答读者问(十八)、一个我至少被问过30遍的monocle报错
粉丝来稿|1. Seurat4相较于Seurat3的几点改动
答读者问| 22.object 'CsparseMatrix_validate' not found
单细胞数据在R中的读取及存储速度太慢怎么办?这个神包来帮你!
单细胞文献阅读:
13分+文章利用scRNA-Seq揭示地铁细颗粒物引起肺部炎症的分子机制
Cell metabolism| 单细胞测序技术解析健康人与T2D患者的胰岛差异
《Cell Metabolism》:肾脏疾病&代谢&核受体ESRRA
《Nature communication》:PD-1&急性髓细胞性白血病&T Cell
2022年了,都有哪些器官/组织有scRNA-Seq数据|小鼠篇
2022年了,都有哪些器官/组织有scRNA-Seq数据|人类篇
<IF=27.4> IgG4相关性疾病中颌下腺和血液中的细胞和分子改变
《Nature Methods》: NiCheNet, 能够考虑到胞内转录调控的细胞通讯软件
自测蛋白质组+Bulk RNA-Seq & 挖掘scRNA-Seq=13.6分JASN
Seurat V5的《Nature Biotechnology》
鼻咽癌的Bulk RNA-Seq与scRNA-Seq联合分析
单细胞注释复写
单细胞复写|3.急性心肌梗塞(AMI)外周血scRNA-Seq分析实战(链接重置)
MLP模型鉴定免疫细胞发育和瘤内T细胞耗竭的单细胞染色质图谱
硬件准备: