10xGenomics官方可视化工具——Loupe Browser

1、简介

Loupe Browser是⼀款10xGenomics开发的交互式桌⾯应⽤程序,⽤于探索10x单细胞数据,可以用来找出感兴趣的细胞、找出显著差异表达的基因、鉴定细胞类型、探索细胞亚类和数据共享。缺点是Loupe Browser不支持进阶分析,需要更多个性化分析的零代码操作可参考:一文学会零代码单细胞分析

软件下载地址:https://www.10xgenomics.com/software

2、使用演示

2.1 导入数据

自行分析时导入的是cloupe.cloupe文件,这里用自带的AML数据(所以别问我要测试数据啦)进行演示:

图片

进入软件分析后,界面主要由5个面板组成:

图片

  1. 左边可以选择不同的聚类方法

  2. 上方split view可以进行拆分

  3. 上方Projection type可以选择t-SNE或者UMAP

  4. 上方右边分别是拖动模式(手形)、套索工具和笔刷都是用于选取细胞,橡皮是擦除选错的细胞

  5. 右上方的导出可以导出图片

2.2 差异分析

这个数据由AML、Normal1、Normal2组成,现根据样本ID进行差异分析。

图片

点击Run differential ecpression:

图片

出现的3个选项:

a.To entire dataset:

为全选模式,即使只选择了3个样本中的2个,也会默认分析3个(所有)样本。

b.Between selected cluster(s) themselves:

局部模式,分析选中的样本。

c.Across multiple samples:

在不同样本之间对同一个分组进行这个样本间的一个差异比较,必须多样本才能使用。

分析结果如下,可以点击export进行导出,导出时可选择基因数量:

图片

2.3 选择目的基因的两种方式(细胞注释)

a. 利用Features进行选择目的基因

例如搜索MS4A1

图片

图片

保存的时候可以对选出的细胞和分组进行命名:

图片

在Clusters中得到了一个新的分组celltype:

图片

对于一些错误的细胞(蓝框),可以用橡皮擦进行去除:

图片

b. 直接导入基因表格

需要提前准备好基因列表,内容格式如下(.csv):

图片

从Features-Create a new feature list上传基因列表:

图片

上传后:

图片

2.4 重新聚类

a.先在Clusters选中想要重新聚类的组别,例如这里选择Patient,再点击Reanalyze

图片

b.会跳出新的分析页面,右边显示的是总的、剔除的和选中的细胞数,点击Next

图片

c.UMI阈值设置,根据样本自行调整,点击Next

d.基因表达阈值设置,点击Next

e.设置线粒体UMI,选择参考基因是根据样本种类,人源或鼠源的则选择对应的,点击Next:

图片

f.可以选择降维方式,t-SNE和UMAP,命名后点击Recluster,注意:PCA、t-SNE、UMAP的参数值可以在蓝色字体的Adjust reanalyze parameters (for advanced users)下去调整。

图片

g.得到重新聚类的结果后即可以对其进行差异基因分析和细胞注释等

图片

认真学完下面的内容,3~10分的SCI理应是囊中之物(当然也不要真的去水文章)

单细胞系列教程目录

单细胞数据分析系列教程:

B站视频,先看一遍视频再去看推送操作,建议至少看三遍:

https://www.bilibili.com/video/BV1S44y1b76Z/

本公众号单细胞相关资料都可以在这里订阅:

scRNA-Seq学习手册2023_R语言版

scRNA-Seq学习手册Python版

单细胞测序基础数据分析保姆级教程,代码部分整理在往期推送之中:

手把手教你做单细胞测序数据分析|1.绪论

手把手教你做单细胞测序数据分析|2.各类数据结构与读取方法

手把手教你做单细胞测序数据分析|3.单样本分析

手把手教你做单细胞测序数据分析|4.多样本整合

手把手教你做单细胞测序数据分析|5.细胞类型注释,从入门到入土

手把手教你做单细胞测序数据分析|6组间差异分析

手把手教你做单细胞测序数据分析|7基因集富集分析

Seurat中分类变量处理技巧

沉浸式统计细胞比例

单细胞图片改造计划:

改造单细胞降维图| 1.DimPlot的探索

改造单细胞降维图| 2.ggplot2中的DIY

改造单细胞降维图| 3.3D降维图与动图绘制

改造单细胞降维图| 4.一些造好的轮子

沉浸式统计细胞比例

改造单细胞FeaturePlot

VlnPlot用法及ggplot复现

VlnPlot的ggplot改造

SCENIC转录因子分析:

SCENIC单细胞转录因子预测|1.绪论

SCENIC单细胞转录因子预测|2.学习手册

SCENIC单细胞转录因子预测|3.软件安装与数据准备

SCENIC单细胞转录因子预测|4.精简版流程

SCENIC单细胞转录因子预测|5.step1+step2构建共表达网络与regulon

SCENIC单细胞转录因子预测|6.Step3 利用AUCell对Regulon评分

SCENIC单细胞转录因子预测|7.Step4 二元矩阵的计算与可视化

SCENIC单细胞转录因子预测|8.Step5 regulon聚类、分群、降维

SCENIC单细胞转录因子预测|9.下游探索

上游fastq文件处理:

单细胞分析的最上游——处理Fastq文件:cellranger

单细胞分析的最上游——处理Fastq文件:dropseqRunner

Cellranger报错:Unable to distinguish between [SC5P-R2, SC3Pv2] ...

BD Rhapsody平台单细胞转录组定量流程

细胞通讯

B站连续播放起来比较方便:

https://www.bilibili.com/video/BV1Ab4y1W7qx?p=1

往期推送

《细胞通讯》1.概论

《细胞通讯》2.1CellChat基础分析教程

《细胞通讯》2.2CellChat多组别分析

《细胞通讯》CellChat学习手册

CellChat空转细胞通讯合辑

SeekSpace细胞通讯分析

拟时序分析

B站连续播放起来比较方便:

https://www.bilibili.com/video/BV1br4y1x7Hf?p=1

往期推送

《拟时序分析》1.概论

《拟时序分析》2.monocle概论

《拟时序分析》3.monocle2实操:精简版拟时序

《拟时序分析》4.monocle2实操:完整版

单细胞测序数据进阶分析—《拟时序分析》5.初识monocle3

单细胞测序数据进阶分析—《拟时序分析》6.monocle3的降维、分群、聚类

单细胞测序数据进阶分析—《拟时序分析》7.monocle3的拟时序分析

解决monocle2的orderCells报错的两种方法

一文搞定拟时序分析的下游可视化探索

scFAST系列

scFAST分析| 01.绪论

scFAST分析| 02.单细胞分析准备工作

scFAST分析| 03.fast模块

scFAST分析| 04.Seurat分析及可视化

scFAST分析| 05.mut模块

一文学会scFAST-seq数据分析

其他单细胞相关技术贴也在这里:

单细胞必修课——Seurat流程

scRNA-Seq双细胞过滤手册

scRNA-Seq学习手册Seurat V4修订版

快速上手Seurat V5

单细胞Figure 1常见图表

细胞的数量由誰决定?

单细胞中应该如何做GSVA?

答读者问(三):单细胞测序前景

答读者问(四):如何分析细胞亚群

答读者问(八):为什么Read10X也会报错?

答读者问(十)整合后的表达矩阵,如何拆分出分组信息?

答读者问(十一)如何一次性读取一个目录下的cellranger输出文件?

给你安排一个懂生信的工具人(十):不学编程 零代码完成单细胞测序数据分析:Loupe Browser

什么?不做单细胞也能分析细胞类群和免疫浸润?

答读者问 (十三)查看Seurat对象时的ERROR:type='text'

各类单细胞对象(数据格式)转换大全(一)

单细胞对象(数据格式)转换大全|2. h5ad转Seuratobj

批量整理好GEO中下载的单细胞数据

答读者问 (十五)稀疏矩阵转matrix, as.matrix函数是下下策

答读者问 (十六)做单细胞测序到底需要多少内存

答读者问 (十七)调用的线程越多就算的越快嘛?

答读者问(十八)、一个我至少被问过30遍的monocle报错

没有barcode文件的单细胞数据要怎么读取

单细胞基因集评分之AUCell

粉丝来稿|1. Seurat4相较于Seurat3的几点改动

如何加快Seurat的计算速度

一文搞定单细胞基因集评分

答读者问(二十)四个单细胞样本只给了一套文件怎么读

人类单细胞测序数据中有哪些以"**-"开头的基因

为什么总把分辨率调的很高

Seurat中如何让细胞听你指挥

答读者问| 22.object 'CsparseMatrix_validate' not found

单细胞数据在R中的读取及存储速度太慢怎么办?这个神包来帮你!

单细胞分群分辨率选择困难症

一文搞定空间转录组与单细胞测序的整合分析

一文掌握十个单细胞数据库

如何将已经构建好的Seurat空转对象转存为原始文件?

一文学会零代码单细胞分析

SeekSpace| 会单细胞就会空间转录组

单细胞文献阅读:

13分+文章利用scRNA-Seq揭示地铁细颗粒物引起肺部炎症的分子机制

除了铁死亡,还有铜死亡?!

拟时序分析神包—monocle的三篇《Nature》

测序技术的发展与应用

Biomamba助推的第二篇文章!发表了!

又来了!Biomamba生信基地助推的第四篇文章!

单细胞测序解析糖尿病肾病中肾小球的动态变化

Cell metabolism| 单细胞测序技术解析健康人与T2D患者的胰岛差异

Science| 小鼠全肾单细胞测序开篇之作

一篇不花钱就能白嫖的文章

不会吧不会吧,Nature都能白嫖?

高氧下小鼠肺发育损伤的ScRNA图谱

IgAN & STRT-Seq

老树开新花—EGFR、肿瘤、免疫+scRNA-Seq

癌前基质细胞驱动BRCA1肿瘤发生

紧跟生信"钱"沿,胰腺癌&免疫多模态图谱

原发头颈癌和肿瘤转移微生态

《Cell Metabolism》:肾脏疾病&代谢&核受体ESRRA

《Nature communication》:PD-1&急性髓细胞性白血病&T Cell

单细胞测序揭示鼻咽癌微环境的基质动力学和肿瘤特异性特征

《Nature》:MYB调控衰竭性T细胞对检查点抑制的响应

单细胞都能活检测序了?

文献阅读(二十九)、单细胞测序做到什么程度能毕业|硕士篇

文献阅读(三十)、单细胞测序做到什么程度能毕业|博士篇

2022年了,都有哪些器官/组织有scRNA-Seq数据|小鼠篇

2022年了,都有哪些器官/组织有scRNA-Seq数据|人类篇

2023年了, 都哪些物种有scRNA-Seq数据

终于读到一篇用monocle3做拟时序的文章

单细胞转录组+亚细胞空间代谢组=25分文章

酸了,六个样本的scRNA-Seq+差异分析=9分文章

自测scRNA-Seq+scWGBS=3分三区文章?

百万级单细胞多组学数据集成

空间转录组与单细胞转录组整合分析工具大比拼

<IF=27.4> IgG4相关性疾病中颌下腺和血液中的细胞和分子改变

微生物组研究技术——微生物也能做单细胞

scRNA-Seq+WGCNA+铁死亡:IF=9.69

《Nature》: 单细胞解析大脑感知流感过程

两万字长文|当前单细胞 RNA-seq 分析的最佳实践

数百万级单细胞数据时代的多组学分析

《Nature Methods》: NiCheNet, 能够考虑到胞内转录调控的细胞通讯软件

基于scRNA-Seq&空间转录组的AKI研究

自测蛋白质组+Bulk RNA-Seq & 挖掘scRNA-Seq=13.6分JASN

非监督式聚类在scRNA-Seq应用中的挑战

Seurat V5的《Nature Biotechnology》

当空转遇上单细胞~

人类肾脏参考组织图谱

有免疫特征的基质细胞,有没有可能是双细胞?

CAR-T治疗急性髓细胞性白血病的scRNA-Seq图谱

临床样本+单细胞+空转=IF4.8?

鼻咽癌的Bulk RNA-Seq与scRNA-Seq联合分析

GPTCelltype:玩GPT4玩出Nature

单细胞注释复写

单细胞注释复写(一):Human Fetal Kidney

单细胞注释复写(二): human colorectal

单细胞复写|3.急性心肌梗塞(AMI)外周血scRNA-Seq分析实战(链接重置)

单细胞复写|4. GSE157783数据集复现及差异分析

CellRank的教程重现

人类肾脏scRNA-seq图谱

小鼠纹状体单细胞基因变化图谱

T Cell单细胞参考图谱

MLP模型鉴定免疫细胞发育和瘤内T细胞耗竭的单细胞染色质图谱

干细胞样CD4+ T细胞与自身免疫性血管炎

小鼠与人类的空间表观单细胞图谱

人类肾脏scRNA-seq图谱

胰腺导管腺癌的内异质性和恶性进展scRNA-seq图谱

肝脏发育、成熟的单细胞图谱

微环境中肿瘤免疫屏障决定了免疫治疗的效果

scRNA揭示T1D骨髓与骨质减少的关系

肝癌单细胞分群marker

胶质瘤相关巨噬细胞scRNA图谱

人类乳腺癌scRNA-seq数据

肢端黑色素瘤细胞scRNA-seq图谱&免疫治疗

皮质神经注释复写

非小细胞肺癌免疫治疗后肿瘤微环境重塑scRNA图谱

小鼠脑动脉瘤模型的scRNA-Seq分析

儿童白血病的单细胞数据读取

疟疾中免疫细胞亚群的调控响应

硬件准备:

生信分析为什么要使用服务器?

足够支持你完成硕博生涯的生信环境

独享服务器,生信分析不求人

为实验室准备一份生物信息学不动产

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值