小白生信入门学习记录【1】什么是基因的表达矩阵

基因表达矩阵是生物信息学中用于表示基因在不同样本或条件下的表达水平的重要工具。矩阵的行代表基因,列表示样本,其中的数值反映了特定基因在相应样本中的表达强度。这种数据结构在研究基因功能、疾病关联及转录组学分析等领域具有关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基因的表达矩阵

基因表达的数据通常使用表达矩阵来表示。
其中矩阵的行代表某个基因在不同样本(不同处理,或时间点等)中的表达水平,列表示某个样本中各个基因的表达水平。

基因表达矩阵息学中的一个重要步骤,通常用于转录组数据分析。这个过程涉及从RNA测序数据或者微阵列实验中量化不同样本里各个基因表达水平。以下是几种常用的方法和工具来创建这样的矩阵: 使用R/Bioconductor包处理RNA-seq数据: Bioconductor是一个开源软件项目,提供了许多用于分析的数据结构与函数。对于RNA-seq数据来说,可以利用`DESeq2`, `edgeR` 或者 `limma` 包。 ```r library(DESeq2) dds <- DESeqDataSetFromTximport(txi, colData, ~ condition) vsd <- vst(dds, blind=FALSE) counts <- counts(vsd) # 获取标准化后的计数矩阵 ``` 采用Python/Scanpy进行单细胞RNA-seq分析: 针对单细胞级别的研究,scanpy提供了一套完整的解决方案来进行预处理、质量控制(QC),降维可视化等操作。 ```python import scanpy as sc adata = sc.read_10x_h5('filtered_gene_bc_matrices.h5') # 加载10X Genomics格式文件 sc.pp.filter_cells(adata, min_genes=200) # 进行QC过滤 sc.pp.normalize_total(adata, target_sum=1e4) # 归一化总UMI数目至常数值 sc.pp.log1p(adata) # log转换以稳定方差 expression_matrix = adata.X # 提取表达矩阵 ``` 应用在线平台如GEO2R或Expression Atlas: 这些网站允许用户上传自己的原始序列读段或是选择已发表的数据集,并自动执行一系列标准流程得到最终的结果表格。 通过上述任一种途径都可以获得一个基因表达矩阵,其中每一列表示一个样品,每行列出特定条件下某个基因在整个样本集合里的相对丰度值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值