状态空间方程的能控性与能观性判断

状态空间方程的能控性与能观性判断


能控性判断方法

对于状态空间方程\dot{x}(t)=Ax(t)+Bu(t),判断是否能控。

注:由于输出在能控性方面不起任何作用,因此在能控性研究中忽略输出方程。 

  1. 矩阵W_{c}(t)=\int_{0}^{t}e^{A\tau }BB^{'}e^{A^{'}\tau }d\tau=\int_{0}^{t}e^{A(t-\tau )}BB^{'}e^{A^{'}(t-\tau )}d\tau对任意t>0均非奇异。
  2. nXnp的“能控性矩阵”[B\, AB \, A^{2}B\, \cdots \, A^{n-1}B]行满秩。
  3. nX(n+p)的矩阵[A-\lambda I\, B]在A的任一特征值\lambda上均行满秩。
  4. 对偶定理:矩阵对(A,B)能控,当且仅当矩阵对(A^{'},B^{'})能观时。

能观性判断方法

对于状态空间方程,判断是否能观。

\dot{x}(t)=Ax(t)+Bu(t)

y(t)=Cx(t)+Du(t)

  1. 矩阵W_{o}(t)=\int_{0}^{t}e^{A^{'}\tau}C^{'}Ce^{A\tau }d\tau对任意t>0均非奇异。
  2. nqXn的能观性矩阵\begin{bmatrix} C\\ CA\\ \vdots \\ CA^{n-1} \end{bmatrix}列满秩。
  3. (n+q)Xn的矩阵\begin{bmatrix} A-\lambda I\\ C \end{bmatrix}在A的任一特征值\lambda上均列满秩。
  4. 对偶定理:矩阵对(A,B)能观,当且仅当矩阵对(A^{'},B^{'})能控时。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值