如何压缩PDF文件大小,满足各种上传大小要求

介绍


今天我们来说一个小技巧,就是对PDF文件大小的压缩。那么这个问题是怎么来的呢,我们在系统上传PDF文件的时候,由于系统限制,PDF大小受到了限制,我们需要对PDF进行压缩小一点进行上传,才能满足系统的要求。那么下来就看看,怎么进行操作吧!

软件


福昕阅读器

下载


这个软件在360软件管家就有,免费的,大家可以自行下载

图文教程


1. 使用福昕阅读器打开我们的原本的PDF论文,点击菜单栏-文件,选择打印

2. 选择福昕阅读器进行打印

3. 设置打印参数,降低图片的分辨率。这里有很多层次的分辨率,分辨率越高,文件的内存就越大,所以选择自己适合的分辨率就好。

4. 选择确定

5. 进行打印

6. 打印完成比较一下大小,看看是不是变化了,那么此时已经从7.69MB变成了539k,已经缩小到了1MB,足够你上传系统了。

7. 怎么样,学会了吗?这么好的技巧赶紧来试试吧!

注:测试结果,有的文件有明显变小(有位图),但有的文件也会不变或明显变大(如矢量图找多时)。没有万能的方法,此法不行可尝试其它方法。如把PDF拆分成单页,找出体积大的单页,将矢量图单图压缩或转换成低质量图片,再合成新的图片。

猜你喜欢

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature Cell专刊 肠道指挥大脑

系列教程:微生物组入门 Biostar 微生物组  宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

一文读懂:宏基因组 寄生虫益处 进化树

必备技能:提问 搜索  Endnote

文献阅读 热心肠 SemanticScholar Geenmedical

扩增子分析:图表解读 分析流程 统计绘图

16S功能预测   PICRUSt  FAPROTAX  Bugbase Tax4Fun

在线工具:16S预测培养基 生信绘图

科研经验:云笔记  云协作 公众号

编程模板: Shell  R Perl

生物科普:  肠道细菌 人体上的生命 生命大跃进  细胞暗战 人体奥秘  

写在后面

为鼓励读者交流、快速解决科研困难,我们建立了“宏基因组”专业讨论群,目前己有国内外5000+ 一线科研人员加入。参与讨论,获得专业解答,欢迎分享此文至朋友圈,并扫码加主编好友带你入群,务必备注“姓名-单位-研究方向-职称/年级”。PI请明示身份,另有海内外微生物相关PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。

学习16S扩增子、宏基因组科研思路和分析实战,关注“宏基因组”

点击阅读原文,跳转最新文章目录阅读

https://mp.weixin.qq.com/s/5jQspEvH5_4Xmart22gjMA

### CUDA 核心与 Tensor 核心的区别及用途 #### CUDA 核心的特点及其应用领域 CUDA 核心是 NVIDIA GPU 中最基本的处理单元,负责执行浮点整数运。这些核心广泛应用于图形渲染以及通用计任务中。对于深度学习而言,CUDA 核心可以支持神经网络中的各种操作,如激活函数、池化层等非矩阵乘法密集型的任务。 ```cpp // 示例:使用 CUDA 核心实现简单的向量加法 __global__ void vectorAdd(const float* A, const float* B, float* C, int numElements) { int idx = blockDim.x * blockIdx.x + threadIdx.x; if (idx < numElements) C[idx] = A[idx] + B[idx]; } ``` #### Tensor 核心的功能特性及其应用场景 Tensor 核心专为加速机器学习工作负载而设计,特别是针对张量(多维数组)间的快速矩阵运进行了优化。自 Volta 架构引入以来,经过多次迭代改进,在最新的 Hopper 架构下已经进化至第四代[^2]。相比于传统 CUDA 核心,Tensor 核心能够显著提高涉及大量并行线性代数运的工作效率,例如卷积神经网络训练过程中的前向传播与反向传播阶段。 ```cpp // 使用 wmma 库调用 Tensor 核心进行矩阵乘法 #include <cuda_fp16.h> #include <mma.h> using namespace nvcuda; void matrixMultiplication() { // 定义矩阵维度其他参数... // 加载输入数据到共享内存 __shared__ half shared_A[...], shared_B[...]; // 创建 fragment 对象存储中间结果 wmma::fragment<wmma::matrix_a, 16, 16, 16, half, wmma::row_major> a_frag; wmma::fragment<wmma::matrix_b, 16, 16, 16, half, wmma::col_major> b_frag; wmma::fragment<wmma::accumulator, 16, 16, 16, float> c_frag; // 将数据加载到 fragments 并执行 MMA 操作 wmma::load_matrix_sync(a_frag, shared_A, ...); wmma::load_matrix_sync(b_frag, shared_B, ...); wmma::mma_sync(c_frag, a_frag, b_frag, c_frag); // 存储最终结果 wmma::store_matrix_sync(..., c_frag, ..., wmma::mem_row_major); } ``` 通过上述对比可以看出,虽然两者都属于 GPU资源的一部分,但在具体功能定位上存在明显差异——CUDA 核心更侧重于满足多样化的一般性需求;而 Tensor 核心得益于其高度专业化的设计理念,在特定类型的高性能计场景尤其是现代深度学习框架内展现出无可比拟的优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值