Gradio介绍

Gradio是一个让AI算法工程师能轻松将模型以Web服务形式分享的工具,它封装了前端、后端和模型推理,通过简单的Python接口即可实现。用户可以快速部署并提供服务,即使不具备工程能力。示例展示了如何使用Gradio创建交互式应用,如手绘识别和文本问候功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Gradio App 就是给 AI 算法工程师训练的模型赋予分享给大众的能力。

从技术侧拆分,由三个部分组成:

前端页面 + 后端接口 + AI算法模型推理

Gradio 做了一件事情,就是将这三个部分封装到一个 Python 接口里,用户通过实现其封装的接口,将自己训练的算法模型以 web 服务的形式展现给大众使用。

1. 一个简单的 gradio 程序

该实例源自官网 Gradio

import gradio as gr

def sketch_recognition(img):
    pass# Implement your sketch recognition model here...

gr.Interface(fn=sketch_recognition, inputs="sketchpad", outputs="label").launch()

用户在交互界面上用鼠标画一幅简笔画,后端给出其分类。

可以看到 gr.Interface().lanuch() 就是将前端页面,后端服务以及 AI 算法模型三者结合到一个接口里,极大的降低了算法模型落地的难度,使得 AI 算法工程师在不具备工程能力的情况下,也能拿快速部署前后端并提供服务。

2. 安装

pip install gradio

3. Hello World

开始学起都是从输出"hello world"开始,这里也不例外。

import gradio as gr

def greet(name):
    return "Hello " + name + "!"

demo = gr.Interface(fn=greet, inputs="text", outputs="text")

demo.launch()

上面的代码运行后,在http// localhost:7860上弹出浏览器:

在这里插入图片描述

左边输入对应的name,右边有基于程序的输出:

在这里插入图片描述

参考文献

Gradio app 基于 Kubernetes 部署实战 - 掘金

Gradio实现算法可视化_uncle_ll的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值