Eigen::Map

Eigen库是一个非常常用的线性代数库。Eigen库中的Map类是一个非常有用却又很容易被忽略的类,它不同于C++ STL中的map。

Eigen::Map 是一个非常有用的类模板,它的主要作用是将已存在的内存块当作 Eigen 矩阵或向量来使用,而无需进行数据的复制操作。这种方式使得你可以直接操作已有的数据,避免了额外的内存开销和数据复制带来的性能损耗。

// Map类模板的定义如下
template<typename PlainObjectType, int MapOptions, typename StrideType> classMap;

参数

解释

PlainObjectType

映射后的eigen数据类型

如常见的Eigen::VectorXd,Eigen::MatrixXd等等

MapOptions

指针所指对象的内存对齐方式,默认值为 Aligned

StrideType

跨度类型,默认情况下map在数组的内存中是连续取得映射元素,可以通过该参数设置按照一定的跨度映射元素

1. 为什么用Eigen::Map

性能优化:避免数据拷贝。在进行矩阵运算时,如果每次都进行数据的拷贝,会带来较大的性能开销。使用Map可以将外部数据陕封到Eigen的内存空间中,直接对原始数据进行操作,从而提高性能。

便捷的数据访问:通过Map,可以直接像操作Eigen内部的矩阵和向量一样操作外部数据结构,这样可以使代码更加简洁易懂。

2. 如何用Eigen::Map

2.1. std::vector转eigen数据类型

/// std::vector映射到 Eigen::Matrix23d
/// 使用std::vector时通过.data()来获取数vector中的数组数据
#include<vector>
intmain()
{
  std::vector<double>data = {1,2,3,4,5,6};

  /// 在Eigen::Map中确定维度
  Eigen::Map<Eigen::Matrix<double,2,3>> map(data.data());
  Eigen::Map<Eigen::Matrix<double,6,1>> map1(data.data());

  //现在你可以像操作矩阵一样操作map,例如:
  std::cout <<"Matrix:/n"<<map<<std::endl;return 0;}
  std::cout <<"Matrix1:/n"<<map1<<std::endl;return 0;}

  /// 修改某一个对象其他也一同变化
  /// 指向相同内存
  map(1,1) = 100;

  std::cout <<"Matrix3:/n"<<map<<std::endl;return 0;}
  std::cout <<"Matrix4:/n"<<map1<<std::endl;return 0;}

  /// 在构造时指定维度
  Eigen::Map<Eigen::VectorXd> vd(data.data(),6);   //构造成一个长度为6的列向量
  std::cout << "------ vd ------" << std::endl << vd << std::endl;
  Eigen::Map<Eigen::MatrixXd> xd(data.data(),3,2); //构造成一个3x2的矩阵
  std::cout << "------ xd ------" << std::endl << xd << std::endl;
}

/// output
///Matrix:
/// 1 2 3
/// 4 5 6

///Matrix1:
/// 1 
/// 2
/// 3
/// 4
/// 5
/// 6

///Matrix:
/// 1 2 3
/// 4 100 6

///Matrix1:
/// 1 
/// 2
/// 3
/// 4
/// 100
/// 6

///------ vd ------
///1
///2
///3
///4
///100
///6
------ xd ------
///1 4
///2 100
///3 6

2.2. array转eigen数据类型

/// 数组转矩阵
#include<Eigen/Dense>
intmain()
{
    doublearray[6] = {1,2,3,4,5,6};
    Eigen::Map<Eigen::Matrix<double,2,3>>map(array);
    // 现在你可以像操作矩阵一样操作map,例如:
    std::cout<<"Matrix:/n"<< map<<<std::endl;
    return
}
/// output
/// Matrix:
/// 1 2 3
/// 4 5 6

3. 注意事项

生命周期管理:确保在使用Map时,所引用的数据结构在作用域内是有效的。如果数据结构被释放或超出作用域,使用Map进行访问将导致未定义行为。

数据对齐:某些硬件平台可能要求数据按照特定的方式对齐,以获得最佳性能。在使用Map时,确保数据的地址和大小满足这些要求。

类型一致性:确保映射的数据类型与模板参数匹配,否则可能会导致运时错误。

通过合理使用Eigen中的Map类,可以有效地提高SLAM算法中矩阵运算的效率和代码的可维护性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值