调用PCL超体聚类分割算法程序过程中的错误问题

PCL超体聚类分割算法的实现使用了:文章https://blog.csdn.net/breeze5428/article/details/24271809中的程序:

对不断调试中出现的问题做一个记录:

(1)若不添加 #include <vtkPolyLine.h>,语句polyLine->GetPointIds  ()->SetNumberOfIds(points->GetNumberOfPoints ());会提示错误:“不允许指针指向不完整的类类型”,上网搜索说是没有include类造成的。因此,加入#include <vtkPolyLine.h>,解决。

(2)语句addSupervoxelConnectionsToViewer (supervoxel->centroid_, adjacent_supervoxel_centers, ss.str (), viewer);中,当结果supervoxel_adjacency为空时,程序报错:“abort() has been called”,上网搜索说是非法指针访问和内存泄漏问题造成的。因此,调整了分割的结晶参数使supervoxel_adjacency不为空。(在supervoxel_adjacency为空时,如何处理异常,未解决)。

(3)语句PointCloudT::Ptr cloud = boost::make_shared <PointCloudT> ();若改为PointCloudT::Ptr cloud;会报错:“assertion failed px!=0”,原因是智能指针未初始化,因此进行初始化boost::make_shared <PointCloudT> (),可解决。

程序中出现的不同问题,是因为直接引用一段完整程序时,有不适用自己文件的部分结果导致,一个个问题去解决即可。

以下是使用PCL点云库实现基于欧几里得聚类的点云分割算法示例代码: ```c++ #include <iostream> #include <pcl/point_types.h> #include <pcl/filters/extract_indices.h> #include <pcl/segmentation/extract_clusters.h> #include <pcl/kdtree/kdtree.h> int main(int argc, char** argv) { // Load point cloud data pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::io::loadPCDFile("input_cloud.pcd", *cloud); // Create KDTree for efficient nearest neighbor search pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>); tree->setInputCloud(cloud); // Create vector for storing cluster indices std::vector<pcl::PointIndices> cluster_indices; // Create EuclideanClusterExtraction object and set parameters pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec; ec.setClusterTolerance(0.02f); // Maximum distance between points in a cluster ec.setMinClusterSize(100); // Minimum number of points in a cluster ec.setMaxClusterSize(25000); // Maximum number of points in a cluster ec.setSearchMethod(tree); ec.setInputCloud(cloud); // Extract clusters ec.extract(cluster_indices); // Print number of clusters found std::cout << "Number of clusters found: " << cluster_indices.size() << std::endl; // Create ExtractIndices object for each cluster and save to file for (int i = 0; i < cluster_indices.size(); ++i) { pcl::ExtractIndices<pcl::PointXYZ> extract; extract.setInputCloud(cloud); extract.setIndices(boost::make_shared<const pcl::PointIndices>(cluster_indices[i])); pcl::PointCloud<pcl::PointXYZ>::Ptr cluster(new pcl::PointCloud<pcl::PointXYZ>); extract.filter(*cluster); pcl::io::savePCDFile("cluster_" + std::to_string(i) + ".pcd", *cluster); } return 0; } ``` 此代码将从名为“input_cloud.pcd”的文件加载点云数据,使用KDTree进行最近邻搜索并执行欧几里得聚类,最后将每个簇的点保存到单独的PCD文件聚类的参数(聚类容差、最小/最大簇大小等)可以根据应用程序的需要进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值