Gromacs——教程学习之RMSD和RMSF(3)

本文介绍了RMSD(均方根偏差)和RMSF(均方根波动)在轨迹分析中的应用,两者都是测量结构偏离的统计指标,但RMSF还考虑了时间因素,反映原子的动态行为。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. RMSD VS RMSF

RMSD,Root Mean Square Deviation,均方根偏差;
RMSF,Root Mean Square Fluctuation,均方根波动。
在轨迹分析中,最经常用,最简单,也最有用的就是这两巨头,二者都是对位移的平方和再求平方根最后求得均值。其实差别就在于,这个“均值”是哪个物理量按照什么的平均。

举例子,现在跑了1ns的轨迹,2fs保存一帧,一共50w帧。假设以初始结构为参考构象,则RMSD曲线就是需要遍历计算50w帧结构与参考构象的RMSD值(当然你也可以减小帧数),然后将每一帧的RMSD连起来的结果。其中,轨迹中某一帧相对于参考构象的RMSD的计算方法如下:
计算RMSD的时候,公式如下:
在这里插入图片描述

δi就是某一帧的第i个原子的位置减去参考构象中它的位置(位置偏移量),然后取所有原子的偏移量的平方和,然后对原子数N取平均,然后开方,就是这一帧结构相对于参考构象的RMSD。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值