对称矩阵的正交对角化和它的奇异分解

博客讨论了对称矩阵的正交对角化与奇异分解的差异,指出奇异值分解中Σ对角线元素为正,而对称矩阵正交对角化并非如此。还给出对称矩阵A的特征值情况,推导了A2的对角化,说明了Σ、V、U的构成,最后提醒要对Aαi单位化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 对称矩阵的正交对角化就是他的奇异分解
  • 当然不是啦!
  • 因为奇异值分解 Σ \Sigma Σ是个对角线都是正的啊!
  • 而对称矩阵的正交对角化显然不是的!

  • 如果 A A A是对称的,特征值为 λ 1 , . . . , λ n \lambda_1,...,\lambda_n λ1,...,λn
    • ∣ λ 1 ∣ ≥ ∣ λ 2 ∣ ≥ . . . ≥ ∣ λ r ∣ > ∣ λ r + 1 ∣ = . . . = ∣ λ n ∣ = 0 |\lambda_1|\ge |\lambda_2|\ge ...\ge|\lambda_r|>|\lambda_{r+1}|=...= |\lambda_n|=0 λ1λ2...λr>λr+1=...=λn=0
    • A = W Σ W T A=W\Sigma W^T A=WΣWT, W = ( α 1 , . . . , α n ) W=(\alpha_1,...,\alpha_n) W=(α1,...,αn)
    • A 2 = W Σ 2 W T A^2=W\Sigma^2W^T A2=WΣ2WT
  • 这说明 A 2 A^2 A2也可对角化,特征值为 λ 1 2 , . . . , λ n 2 \lambda_1^2,...,\lambda_n^2 λ12,...,λn2
    • 特征向量为 W = ( α 1 , . . . , α n ) W=(\alpha_1,...,\alpha_n) W=(α1,...,αn)

  • A = U Σ V T A=U\Sigma V^T A=UΣVT

    • Σ \Sigma Σ的对角线是 A 2 A^2 A2的特征值开根号
      • 分别为 ∣ λ 1 ∣ , ∣ λ 2 ∣ , . . . , ∣ λ n ∣ |\lambda_1|,|\lambda_2|,...,|\lambda_n| λ1,λ2,...,λn
  • V V V的每一列是 A 2 A^2 A2的特征向量

    • 也就是 ( α 1 , . . . , α n ) (\alpha_1,...,\alpha_n) (α1,...,αn)
  • U U U的每一列就是 ( A α 1 , . . . , A α n ) (A\alpha_1,...,A\alpha_n) (Aα1,...,Aαn)

  • 所以

  • 上面写的不对。
  • 要记得把 A α i A\alpha_i Aαi单位化一下!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fgh431

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值