- 对称矩阵的正交对角化就是他的奇异分解
- 当然不是啦!
- 因为奇异值分解 Σ \Sigma Σ是个对角线都是正的啊!
- 而对称矩阵的正交对角化显然不是的!
- 如果
A
A
A是对称的,特征值为
λ
1
,
.
.
.
,
λ
n
\lambda_1,...,\lambda_n
λ1,...,λn
- 且 ∣ λ 1 ∣ ≥ ∣ λ 2 ∣ ≥ . . . ≥ ∣ λ r ∣ > ∣ λ r + 1 ∣ = . . . = ∣ λ n ∣ = 0 |\lambda_1|\ge |\lambda_2|\ge ...\ge|\lambda_r|>|\lambda_{r+1}|=...= |\lambda_n|=0 ∣λ1∣≥∣λ2∣≥...≥∣λr∣>∣λr+1∣=...=∣λn∣=0
- 那 A = W Σ W T A=W\Sigma W^T A=WΣWT, W = ( α 1 , . . . , α n ) W=(\alpha_1,...,\alpha_n) W=(α1,...,αn)
- A 2 = W Σ 2 W T A^2=W\Sigma^2W^T A2=WΣ2WT
- 这说明
A
2
A^2
A2也可对角化,特征值为
λ
1
2
,
.
.
.
,
λ
n
2
\lambda_1^2,...,\lambda_n^2
λ12,...,λn2
- 特征向量为 W = ( α 1 , . . . , α n ) W=(\alpha_1,...,\alpha_n) W=(α1,...,αn)
-
设 A = U Σ V T A=U\Sigma V^T A=UΣVT
-
Σ
\Sigma
Σ的对角线是
A
2
A^2
A2的特征值开根号
- 分别为 ∣ λ 1 ∣ , ∣ λ 2 ∣ , . . . , ∣ λ n ∣ |\lambda_1|,|\lambda_2|,...,|\lambda_n| ∣λ1∣,∣λ2∣,...,∣λn∣
-
Σ
\Sigma
Σ的对角线是
A
2
A^2
A2的特征值开根号
-
V V V的每一列是 A 2 A^2 A2的特征向量
- 也就是 ( α 1 , . . . , α n ) (\alpha_1,...,\alpha_n) (α1,...,αn)
-
U U U的每一列就是 ( A α 1 , . . . , A α n ) (A\alpha_1,...,A\alpha_n) (Aα1,...,Aαn)
-
所以

- 上面写的不对。
- 要记得把 A α i A\alpha_i Aαi单位化一下!