【计算几何02】Bentley Ottmann 的线段交点算法

Line Intersection using Bentley Ottmann Algorithm Tutorials & Notes | Math | HackerEarth

目录

一、说明

二、问题描述

2.1 直线段限定在水平和垂直

2.2 将问题复杂化线条不垂直的交点

三、相关实验代码

四、测试代码说明

五、python包

5.1 安装 Developer

5.2 测试代码


一、说明

        在计算几何中,Bentley-Ottmann 算法是一种扫描线算法,用于列出一组线段中的所有交叉点,即它找到线段的交点(或简称为交点)。它扩展了 Shamos–Hoey 算法。用于测试一组线段是否有任何交叉点。对于包含的输入n 个线段与,k 个交叉点(或交叉路口),Bentley–Ottmann 算法需要时间 O(  (N+k)log⁡N )

二、问题描述

        给定一组 N 条线段(2*N 点),你需要找到这些线段之间的所有交点。
        也许,您首先想到的是一种天真的方法来检查所有线段对是否相交。但是你知道这不是一个好方法,因为如果我们的交叉点较少,它会包含不必要的计算。其次,它会以未排序的顺序给出交叉点。所以,我们需要一些替代方法来解决这个问题。

2.1 直线段限定在水平和垂直

        我们可以使用线扫描技术解决这个问题。但是在解决这个问题之前,首先让我们只考虑水平和垂直线段。

        问题:给定N条水平线段和垂直线段,我们需要找到水平线段和垂直线段的所有交点。在这里,我们不会考虑重合的端点相交。
        方法:继续我们的事件和活动集的概念,让我们首先为这个问题定义它们。在这里,我们将考虑三种类型的事件:水平线段的开始、水平线段的结束和垂直线段。我们的活动集包含所有被扫描线切割的水平线段(按 y 坐标排序)。

        虚线是扫描线,黑线是给定的水平线和垂直线,红线是任意时刻与扫描线相交的水平线。
我们的算法如下:
        1. 当我们击中水平线段的起点时,我们将线(在我们的实现中,我们将插入起点)插入到我们的集合中。
        2. 当我们击中水平线段的终点时,我们从集合中移除线段(实现中线段的起点)。
        3. 当我们碰到一条垂直线时,我们检查集合中位于垂直线段起始和结束 y 坐标之间的所有线段,即,如果垂直线段由 (x1,y1) 和 (x1) 表示,y2), 我们检查位于 (y1,y2) 范围内的水平线段。
这就完成了我们的算法。那么,让我们跳到实现部分:

#define x second
#define y first
typedef pair<int,int >point;
struct event 
{
    point p1,p2;
    int type;
    event() {};
    event(point p1,point p2, int type) : p1(p1), p2(p2),type(type) {};  //initialization of event
};
int n,e;
event events[MAX];
bool compare(event a, event b) 
{ 
    return a.p1.x<b.p1.x; 
}
set<point >s;
void hv_intersection()
{
    for (int i=0;i<e;++i)
        {
                event c = events[i];
                if (c.type==0) s.insert(c.p1);//insert starting point of line segment into set
                else if (c.type==1) s.erase(c.p2);//remove starting point of line segment from set, equivalent to removing line segment
                else
                {
                        for (typeof(s.begin()) it=s.lower_bound(make_pair(c.p1.y,-1));it!=s.end() && it->y<=c.p2.y; it++) // Range search
                                printf("%d, %d\n", events[i].p1.x, it->y);//intersections
                }
        }
}
int main () 
{
    scanf("%d", &n);
    int p1x,p1y,p2x,p2y;
        for (int i=0;i<n;++i) 
        {
                scanf("%d %d %d %d", &p1x, &p1y,&p2x, &p2y);
        if(p1x==p2x)                //if vertical line, one event with type=2
        {
            events[e++]=event(make_pair(p1y,p1x),make_pair(p2y,p2x),2);
        }
        else                    //if horizontal line, two events one for starting point and one for ending point
        {
            //store both starting points and ending points
            events[e++]=event(make_pair(p1y,p1x),make_pair(p2y,p2x),0);
            //store both ending and starting points, note the order in the second, this is because we sort on p1, so ending points first, then we remove a line when we hit its ending point , so we need its starting point for removal of line
            events[e++]=event(make_pair(p2y,p2x),make_pair(p1y,p1x),1);
        }
        }
    sort(events, events+e,compare);//on x coordinate
    hv_intersection();
    return 0;
}

        复杂度分析:所有对事件的操作(insert,erase, lower_bound)都需要O(log(N))
时间,内循环运行 k 次,其中 k 是交叉点的数量。因此,上述算法的复杂度为O(Nlog(N)+k)
所以,下一个想到的问题是如果 k 是O(N*2),所以在那种情况下我们的算法运行缓慢。这是对的,但想想如果我们有路口,然后我们得到相当大的加速。其次,如果我们只需要交叉点的数量而不是交叉点本身会怎么样。然后我们可以找到交叉点的数量使用二叉树结构的时间(通过将子树的大小存储在子树的根中)。

2.2 将问题复杂化线条不垂直的交点

        让我们回到我们的问题,线条不一定是垂直或水平的。在那种情况下该怎么办?

       A: 首先,让我们列出算法中的假设:
        1.没有垂直线段。
        2. 没有两条线段在它们的端点处相交。
        3. 没有三个(或更多)路段有共同的交叉点。
        4.线段的所有端点和所有交点具有不同的x坐标。
        5. 没有两个段重叠。

      B :主要相交性判别原理:
        1. 两条线相交,它们必须彼此相邻。因此,我们将只检查相邻线是否相交。
        2. 当两条线段相交时,它们改变位置,即相交前在下方的线在上方,另一条线在下方。

      C在开始算法之前,首先让我们定义事件和活动集

        扫描线算法的Events

        事件:线段的端点、交点。(我们会在找到它们时插入交点)。在这里,我们将使用优先级队列作为我们的数据结构,因为由于交叉点的动态插入和删除,预排序将不起作用。让我们用 PQ 表示优先级队列

        扫描线算法的Active Set

        在任何时候,活动集都包含被扫描线切割的线段,按 y 坐标排序。让我们用 SL 表示这个活动集。伪代码:

   Initialize PQ = all segment endpoints;
    Initialize SL to be empty;
    Initialize output intersection list IL to be empty;

    While (PQ is nonempty) {
        Let E = the next event from PQ;
        If (E is a left endpoint) {
            Let segE = segment of E;
            Add segE to SL;
            Let segA = the segment Above segE in SL;
            Let segB = the segment Below segE in SL;
            If (I = Intersect( segB with segA) exists) 
                Delete I from PQ;
            If (I = Intersect( segE with segA) exists) 
                Insert I into PQ;
            If (I = Intersect( segE with segB) exists) 
                Insert I into PQ;
        }
        Else If (E is a right endpoint) {
            Let segE = segment of E;
            Let segA = the segment Above segE in SL;
            Let segB = the segment Below segE in SL;
            Delete segE from SL;
            If (I = Intersect( segA with segB) exists)  
                    Insert I into PQ;
        }
        Else {  // E is an intersection event
            Add intersect point of E to the output list IL;
            Let segE1 above segE2 be intersecting segments of E in SL;
            Swap their positions so that segE2 is now above segE1;
            Let segA = the segment above segE2 in SL;
            Let segB = the segment below segE1 in SL;
            If (I = Intersect( segE1 with segA) exists) 
                Delete I from PQ;
            If (I = Intersect( segE2 with segB) exists) 
                Delete I from PQ;
            If (I = Intersect(segE2 with segA) exists)
                    Insert I into PQ;
            If (I = Intersect(segE1 with segB) exists) 
                    Insert I into PQ;
        }
        remove E from PQ;
    }
    return IL;
}

        那是 Bentley Ottmann 算法,用于在给定 N 条线段时找到所有交叉点。让我们看一下图像以更好地理解它。

 算法详解:

      1)输入线段:( P(x,y),P1(x,y))循环输入全部线段用PP1表示。

      2)对所有的线段端点(包括P和P1)按照x坐标排序,上图排序结果是:

         PQ =   【 A,B,C,D,B1,D1,A1,C1】

      3)我们提取 PQ 中的最小值并将其作为我们的事件。所以,我们知道这个事件可能是左端点、右端点或交点。如图:扫描线对PQ扫描,扫到A

         A进入队列,(A是第一个点) 

        List = 【A】                  表示唯一线段是A为起始点。

  • 1  扫描线继续扫描PQ,找到B,比较A与扫描线交点W和B的y坐标,y(Wa)>y(B),表明A线段在B点上方,所以:

        List = 【A,B】

  • 2  继续扫描PQ序列,读出C点,因为y(C)<y(Wb)<y(Wa),因此,C线段在最下方,

        List = 【A,B,C】

  • 3 继续扫描PQ序列,读出D点,此时,扫描线对应的交点按照y排序是是Wa,Wc,Wb,D

所以: List = 【A,C,B,D】 

        可以观察到,线序从【A,B,C】跳转到 List = 【A,C,B,D】 其中B和C产生一个逆序,因此,B和C有一个交点。(求出该交点保存)

  • 4 继续扫描,看到B1点,因为B1点是个后端点,所以删除与之相对应的线段B:于是

List = 【A,C, D】

  • 5 继续扫描,看到D1点,因为D1点是个后端点,所以删除与之相对应的线段D:计算扫描交点顺序:    y(Wc) >y(Wa) 

        List = 【C,A】这里产生一个逆序,所以A和C两个线段必然相交,求出交点并保存。

  • 6 继续扫描,看到A1点,因为A1点是个后端点,所以删除与之相对应的线段:计算扫描交点顺序:  Wc > Wa 

        List = 【C 】 。

  • 7 继续扫描,看到C1点,因为C1点是个后端点,所以删除与之相对应的线段:List = 【  】 。

        算法结束。

三、相关实验代码

# lsi.py
# Implementation of the Bentley-Ottmann algorithm, described in deBerg et al, ch. 2.
# See README for more information.
# Author: Sam Lichtenberg
# Email: splichte@princeton.edu
# Date: 09/02/2013 

from Q import Q
from T import T
from helper import *

# "close enough" for floating point
ev = 0.00000001

# how much lower to get the x of a segment, to determine which of a set of segments is the farthest right/left
lower_check = 100

# gets the point on a segment at a lower y value.
def getNextPoint(p, seg, y_lower):
	p1 = seg[0]
	p2 = seg[1]
	if (p1[0]-p2[0])==0:
		return (p[0]+10, p[1])
	slope = float(p1[1]-p2[1])/(p1[0]-p2[0])
	if slope==0:
		return (p1[0], p[1]-y_lower)
	y = p[1]-y_lower
	x = p1[0]-(p1[1]-y)/slope
	return (x, y)

"""
for each event point:
	U_p = segments that have p as an upper endpoint
	C_p = segments that contain p
	L_p = segments that have p as a lower endpoint
"""
def handle_event_point(p, segs, q, t, intersections):
	rightmost = (float("-inf"), 0)
	rightmost_seg = None
	leftmost = (float("inf"), 0) 
	leftmost_seg = None

	U_p = segs
	(C_p, L_p) = t.contain_p(p)
	merge_all = U_p+C_p+L_p
	if len(merge_all) > 1:
		intersections[p] = []
		for s in merge_all:
			intersections[p].append(s) 
	merge_CL = C_p+L_p
	merge_UC = U_p+C_p
	for s in merge_CL:
		# deletes at a point slightly above (to break ties) - where seg is located in tree
		# above intersection point
		t.delete(p, s)
	# put segments into T based on where they are at y-val just below p[1]
	for s in merge_UC:
		n = getNextPoint(p, s, lower_check) 
		if n[0] > rightmost[0]:
			rightmost = n 
			rightmost_seg = s
		if n[0] < leftmost[0]:
			leftmost = n
			leftmost_seg = s
		t.insert(p, s)

	# means only L_p -> check newly-neighbored segments
	if len(merge_UC) == 0:
		neighbors = (t.get_left_neighbor(p), t.get_right_neighbor(p))
		if neighbors[0] and neighbors[1]:
			find_new_event(neighbors[0].value, neighbors[1].value, p, q)
			
	# of newly inserted pts, find possible intersections to left and right
	else:
		left_neighbor = t.get_left_neighbor(p)
		if left_neighbor:
			find_new_event(left_neighbor.value, leftmost_seg, p, q)
		right_neighbor = t.get_right_neighbor(p)
		if right_neighbor:
			find_new_event(right_neighbor.value, rightmost_seg, p, q)

def find_new_event(s1, s2, p, q):
	i = intersect(s1, s2)
	if i:
		if compare_by_y(i, p) == 1:
			if not q.find(i):
				q.insert(i, [])
	
# segment is in ((x, y), (x, y)) form
# first pt in a segment should have higher y-val - this is handled in function
def intersection(S):
	s0 = S[0]
	if s0[1][1] > s0[0][1]:
		s0 = (s0[1], s0[0])
	q = Q(s0[0], [s0])
	q.insert(s0[1], [])
	intersections = {}
	for s in S[1:]:
		if s[1][1] > s[0][1]:
			s = (s[1], s[0])
		q.insert(s[0], [s])
		q.insert(s[1], [])
	t = T()
	while q.key:
		p, segs = q.get_and_del_min()
		handle_event_point(p, segs, q, t, intersections)
	return intersections

# Test.py
# Test file for lsi.
# Author: Sam Lichtenberg
# Email: splichte@princeton.edu
# Date: 09/02/2013

from lsi import intersection
import random
import time, sys
from helper import *

ev = 0.00000001

def scale(i):
	return float(i)

use_file = None
try:
	use_file = sys.argv[2]
except:
	pass

if not use_file:
	S = [] 
	for i in range(int(sys.argv[1])):
		p1 = (scale(random.randint(0, 1000)), scale(random.randint(0, 1000)))
		p2 = (scale(random.randint(0, 1000)), scale(random.randint(0, 1000)))
		s = (p1, p2)
		S.append(s)
	f = open('input', 'w')
	f.write(str(S))
	f.close()

else:
	f = open(sys.argv[2], 'r')
	S = eval(f.read())

intersections = []
seen = []
vs = False
hs = False
es = False
now = time.time()
for seg1 in S:
	if approx_equal(seg1[0][0], seg1[1][0], ev):
		print 'VERTICAL SEG'
		print ''
		print ''
		vs = True
	if approx_equal(seg1[0][1], seg1[1][1], ev):
		print 'HORIZONTAL SEG'
		print ''
		print ''
		hs = True
	for seg2 in S:
		if seg1 is not seg2 and segs_equal(seg1, seg2):
			print 'EQUAL SEGS'
			print ''
			print ''
			es = True
		if seg1 is not seg2 and (seg2, seg1) not in seen:
			i = intersect(seg1, seg2)
			if i:
				intersections.append((i, [seg1, seg2]))
		#		xpts = [seg1[0][0], seg1[1][0], seg2[0][0], seg2[1][0]]
		#		xpts = sorted(xpts)
		#		if (i[0] <= xpts[2] and i[0] >= xpts[1]:
		#			intersections.append((i, [seg1, seg2]))
				seen.append((seg1, seg2))
later = time.time()
n2time = later-now
print "Line sweep results:"
now = time.time()
lsinters = intersection(S)
inters = []
for k, v in lsinters.iteritems():
	#print '{0}: {1}'.format(k, v)
	inters.append(k)
#	inters.append(v)
later = time.time()
print 'TIME ELAPSED: {0}'.format(later-now)
print "N^2 comparison results:"
pts_seen = []
highestseen = 0
for i in intersections:
	seen_already = False
	seen = 0
	for p in pts_seen:
		if approx_equal(i[0][0], p[0], ev) and approx_equal(i[0][1], p[1], ev):
			seen += 1
			seen_already = True
	if seen > highestseen:
		highestseen = seen
	if not seen_already:
		pts_seen.append(i[0])
	in_k = False
	for k in inters:
		if approx_equal(k[0], i[0][0], ev) and approx_equal(k[1], i[0][1], ev):
			in_k = True
	if in_k == False:
		print 'Not in K: {0}: {1}'.format(i[0], i[1])
#	print i
print highestseen
print 'TIME ELAPSED: {0}'.format(n2time)
#print 'Missing from line sweep but in N^2:'
#for i in seen:
#	matched = False
print len(lsinters)
print len(pts_seen)
if len(lsinters) != len(pts_seen):
	print 'uh oh!'

四、测试代码说明

for more information.

Usage:

from lsi import intersection

# S is a list of tuples of the form: ((x,y), (x,y))
i = intersection(S)

This function returns a dictionary of intersection points (keys) and a list of their associated segments (values).


Currently, this implementation does not handle horizontal/vertical line segments. This will be changed shortly!

A test file is available. It compares the running time of the algorithm to that of a brute-force O(N^2) comparison. It also generates a specified number of random input segments--you can set the precision and range by editing the file.

Email at: splichte@princeton.edu

五、关于使用python包

5.1 安装

python -m pip install --upgrade bentley_ottmann

5.2 最新开发包安装

1、从 GitHub 存储库下载最新版本

git clone https://github.com/lycantropos/bentley_ottmann.git
cd bentley_ottmann

2、安装依赖包

python -m pip install -r requirements.txt

3、正式安装

python setup.py install

5.3 测试代码

Usage
With segments

>>> from ground.base import get_context
>>> context = get_context()
>>> Point, Segment = context.point_cls, context.segment_cls
>>> unit_segments = [Segment(Point(0, 0), Point(1, 0)), 
...                  Segment(Point(0, 0), Point(0, 1))]
we can check if they intersect

>>> from bentley_ottmann.planar import segments_intersect
>>> segments_intersect(unit_segments)
True
With contours

>>> Contour = context.contour_cls
>>> triangle = Contour([Point(0, 0), Point(1, 0), Point(0, 1)])
>>> degenerate_triangle = Contour([Point(0, 0), Point(2, 0), Point(1, 0)])
we can check if they are self-intersecting or not

>>> from bentley_ottmann.planar import contour_self_intersects
>>> contour_self_intersects(triangle)
False
>>> contour_self_intersects(degenerate_triangle)
True

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
Bentley-Ottmann算法和扫描线算法都是计算机科学领域中的几何算法,主要用于解决平面上的几何问题。 Bentley-Ottmann算法是一种用于求解线段交点问题的算法。它使用了扫描线的概念,通过扫描线从上到下遍历平面上的线段,并将其投影到水平的事件点序列上。在扫描线的过程中,通过维护一个有序的事件点集合以及一个有序的线段交点集合来找到所有的线段交点。该算法的时间复杂度为O((n+k) log n),其中n为线段的数量,k为交点的数量。 扫描线算法是一种通过扫描线的方式来解决一些几何问题的算法。其基本思想是将平面划分为许多水平的扫描线,并在每条扫描线上进行计算。算法从上到下按扫描线依次处理每个图形对象,记录下与当前扫描线相交的图形边界,并根据需要更新一些数据结构来保存相关信息。在处理完所有图形对象后,可以得到所需要的结果。扫描线算法主要应用于计算几何、计算机图形学等领域中的问题,例如求解多边形交集、寻找包含某一点的图形等。由于其简洁高效的特点,扫描线算法在计算机图形学中的应用非常广泛。 综上所述,Bentley-Ottmann算法和扫描线算法都是用于解决平面上几何问题的算法Bentley-Ottmann算法主要用于求解线段交点问题,而扫描线算法适用于处理一些特定的几何问题。这两种算法都是在计算几何和计算机图形学等领域中非常有用的工具。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值