ROS标定海康威视摄像头

ROS视摄像头标定----海康威视

引言:

​ 摄像头标定是为了确保视觉系统能够准确反映现实世界中的对象,并消除图像中的畸变效果。在本实验中,我们使用了ROS中的功能包进行摄像头标定。标定的原理包括畸变校正和摄像头参数估计。通过移动标定板并捕获不同角度和距离的图像,我们可以获取摄像头的内参和外参。这些参数将使得图像处理和三维构建更加准确和可靠。通过本实验,我们将深入了解标定的流程,并熟悉使用ROS功能包进行标定的方法。这将为我们提供可靠的摄像头数据,为后续的机器人视觉任务奠定基础。

希望你在本次学习过后,能够有一定的收获!!!

推荐歌曲—不在联系-程响

​ 冲啊!!!! ٩(͡๏̯͡๏)۶ ٩(͡๏̯͡๏)۶ ٩(͡๏̯͡๏)۶

一、实验前言

在进行相关的实验之前,让我们先来了解一下相关的内容!!!

为什么要进行标定

  1. 准确性: 通过标定摄像头,可以确保视觉系统捕获的图像准确反映现实世界中的对象。这对于机器人的导航、物体识别和操作等任务至关重要。
  2. 畸变校正: 几乎所有的摄像头镜头都会引入某种形式的畸变,特别是广角镜头。畸变会使得图像呈现出凹凸不平的效果,通过标定过程可以识别并校正这种畸变。
  3. 世界坐标系映射: 在进行物体抓取或场景理解时,必须将图像坐标转换为现实世界的三维坐标。标定过程能够建立图像像素与实际物理世界坐标之间的关系。

标定的原理

视摄像头标定的原理主要涉及两大部分:畸变校正和摄像头参数估计。

  1. 畸变校正: 摄像头镜头畸变主要分为径向畸变和切向畸变。

    • 径向畸变是最常见的一种畸变类型,随着离镜头中心的距离增加变得越来越显著,主要表现为图像的拉伸或压缩。
    • 切向畸变通常发生因为摄像头镜片没有完全平行于成像平面,造成的图像位置偏移。

    畸变参数的估算通过标定过程进行,使用这些参数,可以准确地校正图像,消除畸变效果。

  2. 摄像头参数估计: 主要分为内参和外参。

    • 内参包括焦距(f)、主点坐标(c_x,c_y)以及畸变系数,这些参数反映了摄像头自身特性。
    • 外参反映了摄像头相对于某个世界坐标系的位置和方向。外参对于确定摄像头视角、进行多摄像头系统同步和世界坐标系映射尤为重要。

标定过程

ROS典型的视摄像头标定过程使用棋盘格标定板,捕获不同角度和距离的棋盘格图像,利用这些图像计算摄像头的内外参数。通过这一过程,可以完成摄像头的标定,进而用于准确地图像处理和三维构建。

综上所述,摄像头标定是确保视觉系统在实际应用中发挥出良好性能的基础。正确的标定过程可以显著提升机器人视觉任务的准确度和可靠性。

接下来然我们进行相应的实验内容。

二、准备工作

实验器材

  1. 一个摄像头–啥摄像头都可以,只要对应的电脑能够读取(我这边采用海康威视
  2. 一台可以开启并且正常运行的电脑
  3. 一个标定板 (我这边就拿手机放标定板图片作为标定目标)

如为对应的实验器材图片

  • 海康威视摄像头

    在这里插入图片描述

  • 标定板图片

    在这里插入图片描述

实验环境

  1. ROS版本 —> Melodic Morenia
  2. ubuntu版本—> 18.04 LTS

三、安装功能包

在ROS中安装camera_calibration功能包是非常简单的。可以通过以下步骤来安装camera_calibration功能包:

  1. 打开终端窗口。
  2. 输入以下命令以更新软件包列表:
   sudo apt-get update
  1. 然后,输入以下命令以安装camera_calibration功能包:
   sudo apt-get install ros-melodic-camera-calibration
  1. 系统将提示您输入密码以进行安装。输入密码并按下Enter键。

  2. 系统将自动下载并安装camera_calibration功能包以及其相关依赖项。请耐心等待安装完成。

安装完成后,就可以在ROS中使用camera_calibration功能包进行相机标定实验。

并且我们也可以阅相关文档或实验报告,按照给定的指导进行后续操作和使用camera_calibration功能包进行相机标定。

就比如安装完后,我们可以进行摄像头的测试,检测摄像头是否正确连接对应的功能包是否安装正确

  1. 启动ROS

    roscore
    
  2. 启动摄像头驱动节点:

    roslaunch usb_cam usb_cam-test.launch
    

    在这里插入图片描述

  3. 查看话题

    rostopic list  #列出 topic 确保相机正在通过ROS发布图像
    ———————输出—————————
    /image_view/output
    /image_view/parameter_descriptions
    /image_view/parameter_updates
    /rosout
    /rosout_agg
    /usb_cam/camera_info
    /usb_cam/image_raw
    /usb_cam/image_raw/compressed
    /usb_cam/image_raw/compressed/parameter_descriptions
    /usb_cam/image_raw/compressed/parameter_updates
    /usb_cam/image_raw/compressedDepth
    /usb_cam/image_raw/compressedDepth/parameter_descriptions
    /usb_cam/image_raw/compressedDepth/parameter_updates
    /usb_cam/image_raw/theora
    /usb_cam/image_raw/theora/parameter_descriptions
    /usb_cam/image_raw/theora/parameter_updates                        
    

四、标定流程

  1. 启动摄像头驱动节点:

    rosrun usb_cam usb_cam_node
    roslaunch usb_cam usb_cam-test.launch
    
  2. 查看图像话题是否发布:

rostopic list  #列出 topic 确保相机正在通过ROS发布图像

在这里插入图片描述

  1. 新开一个终端,运行标定节点:
rosrun camera_calibration cameracalibrator.py --size 7x9 --square 0.1 image:=/usb_cam/image_raw camera:=/head_camera --no-service-check

此命令运行标定结点的python脚本,其中 :
(1)–size 7x9 为棋盘内部角点的个数,方格几列几行(需要减1),比如我的标定板方格是8X10,则siez为7x9。
(2)–square 0.1为每个棋盘格的边长
(3)image:=/usb_cam/image_raw 为当前订阅的图像来自名为/usb_cam/image_raw的topic
(4)camera:=/head_camera为摄像机名(我试过写camera:=/camera也可以,目前还不知道是什么原因…)
(5)加上–no-service-check是因为一开始运行后出现下面的错误,参考官网加上此参数后就可正常显示:

('Waiting for service', '/camera/set_camera_info', '...')
Service not found

这将打开标定窗口,如下图所示:

在这里插入图片描述

  1. 移动标定板:

为了达到良好的标定效果,需要在摄像机周围移动标定板,并完成以下基本需求:
(1)移动标定板到画面的最左、右,最上、下方。
(2)移动标定板到视野的最近和最远处。
(3)移动标定板使其充满整个画面。
(4)保持标定板倾斜状态并使其移动到画面的最左、右,最上、下方 。
当标定板移动到画面的最左、右方时,此时,窗口的x会达到最小或满值。同理,y指示标定板的在画面的上下位置,size表示标定板在视野中的距离,也可以理解为标定板离摄像头的远近。skew为标定板在视野中的倾斜位置。每次移动之后,请保持标定板不动直到窗口出现高亮提示。
直到条形变为绿色。当calibration按钮亮起时,代表已经有足够的数据进行摄像头的标定,此时请按下calibration并等待一分钟左右,标定界面会变成灰色,无法进行操作,属于正常情况。

在这里插入图片描述

  1. 获得标定结果:
    在标定完成后,终端会输出校正结果。如下所示:
    在这里插入图片描述

如下为对应的字段解析

  • distortion为畸变系数矩阵。
  • camera matrix:摄像头的内部参数矩阵
  • distortion:畸变系数矩阵
  • rectification:矫正矩阵,一般为单位阵
  • projection:外部世界坐标到像平面的投影矩阵
  • K:相机内参矩阵
  1. 保存查看结果

    点击SAVE按钮。

    如果对标定结果满意,点击COMMIT按钮将结果保存到默认文件夹
    并且我们可以将它修改为对应的yaml文件,便于以后使用

    在这里插入图片描述

五、心得总结

通过本次实验,我对ROS视摄像头标定的过程有了更深刻的理解和实践经验。以下是我的一些心得和总结:

  1. 理论与实践相结合:在理论学习中了解到的标定原理,如畸变校正和摄像头参数估计,在实践操作中得到了具体应用。亲手进行标定过程,使我能够更直观地理解参数如何影响图像质量,并实际观察到校正畸变后图像的改善。
  2. 细节至关重要:实验过程中,我认识到了准确操作和细节处理的重要性。如确保标定板的清晰度、多角度和多位置的捕捉对提高标定精度有显著影响。此外,学会解读标定过程中的图形界面反馈,以及如何通过这些反馈改善数据采集,是成功标定的关键。
  3. 实验环境的重要性:良好的环境条件对于实验结果具有一定影响。例如,稳定的照明可以减少图像中的噪声,并提高角点检测的准确性。
  4. 耐心与仔细观察:在标定过程中,一定要保持耐心。多次调整标定板至不同位置和角度直到所有指示条都变为绿色,才能确保收集到足够用于计算的数据点。

最后感谢大佬友情链接:

### 海康威视摄像头ROS集成 为了实现海康威视摄像头ROS系统的集成,通常需要安装特定的驱动程序和支持包来确保两者之间的兼容性和数据传输效率。具体过程涉及配置环境变量、编译必要的库文件以及编写订阅图像流的主题节点。 #### 安装依赖项和设置开发环境 在Linux环境下操作前需确认已正确安装ROS版本,并通过官方渠道获取最新版Hikvision SDK用于后续步骤中的功能调用[^1]: ```bash sudo apt-get update && sudo apt-get install ros-noetic-camera-info-manager python3-catkin-tools git cmake build-essential libusb-dev pkg-config ``` 接着克隆仓库至工作空间内完成源码下载任务;此项目包含了针对不同型号设备优化过的接口函数以便快速接入应用层逻辑处理流程之中: ```bash cd ~/catkin_ws/src/ git clone https://github.com/hikvision camera_sdk_ros.git ``` #### 编写启动脚本与参数调整 创建一个新的launch文件夹用来放置自定义加载器文档,在其中编辑名为`hik_camera.launch`的新XML描述符以指定连接属性和其他选项设置如下所示: ```xml <launch> <!-- 加载相机节点 --> <node name="hik_cam_node" pkg="camera_sdk_ros" type="hik_cam_node" output="screen"> <param name="device_id" value="0"/> <param name="frame_rate" value="30"/> <param name="image_width" value="1920"/> <param name="image_height" value="1080"/> </node> <!-- 发布静态变换 (可选) --> <node unless="$(arg no_static_tf)" pkg="tf2_ros" type="static_transform_publisher" name="base_link_to_camera_rgb_optical_frame" args="0.075 0 0.06 $(arg base_link_z_offset) pi/2 0 /base_link /camera_rgb_optical_frame"/> </launch> ``` 上述代码片段展示了如何利用标准标签语法声明一个简单的发布者实例化对象,它会周期性地向总线广播来自选定硬件单元捕获到的画面帧序列信息给其他监听组件消费使用。 #### Python示例代码展示 下面给出了一段基于Python语言撰写的简易测试应用程序,该例子能够接收由前述服务端推送过来的数据包并通过OpenCV窗口实时预览显示出来效果: ```python import rospy from sensor_msgs.msg import Image import cv2 from cv_bridge import CvBridge, CvBridgeError class HIKCameraSubscriber(object): def __init__(self): self.bridge = CvBridge() self.image_subscriber = rospy.Subscriber("/hik/camera/image_raw", Image, self.callback) def callback(self, data): try: frame = self.bridge.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print(e) return cv2.imshow('HIK Camera', frame) key = cv2.waitKey(1) if __name__ == '__main__': rospy.init_node('hik_camera_viewer') viewer = HIKCameraSubscriber() try: rospy.spin() finally: cv2.destroyAllWindows() ``` 这段程序主要负责初始化消息队列监听通道并将接收到的内容转换成适合本地渲染引擎解析的形式最后呈现于屏幕上供观察人员查看验证整个链路是否正常运作良好。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LX很爱吃葱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值