【智能算法】鸭群算法(DSA)原理及实现

在这里插入图片描述


1.背景

2021年,Zhang等人受到自然界鸭群觅食行为启发,提出了鸭群算法(Duck Swarm Algorithm, DSA)。

2.算法原理

2.1算法思想

DSA基于自然界鸭群觅食过程,主要分为两个阶段:寻找食物(探索阶段)和群体觅食(开发阶段)。DSA需要遵循两条规则

  • 寻找食物时,搜索能力强的鸭子会靠近食物来源的中心,这样会吸引其他个体靠近,更新后的位置也会受到附近个体的影响 (领导者-跟随者类型)
  • 觅食时,所有个体都接近食物,下一个位置受到邻近个体和食物位置或领导鸭的影响

在这里插入图片描述

2.2算法过程

寻找食物

鸭群逐渐分散并开始寻找食物:
X i t + 1 = { X i t + μ ⋅ X i t ⋅ s i g n ( r − 0.5 ) , P > r a n d X i t + C F 1 ⋅ ( X l e a d e r t − X i t ) + C F 2 ⋅ ( X j t − X i t ) , P < r a n d (1) \boldsymbol{X}_i^{t+1}=\begin{cases}\boldsymbol{X}_i^t+\mu\cdot\boldsymbol{X}_i^t\cdot sign(r-0.5),P>rand\\\boldsymbol{X}_i^t+CF_1\cdot(\boldsymbol{X}_{leader}^t-\boldsymbol{X}_i^t)+CF_2\cdot(\boldsymbol{X}_j^t-\boldsymbol{X}_i^t),P<rand\end{cases}\tag{1} Xit+1={Xit+μXitsign(r0.5),P>randXit+CF1(XleadertXit)+CF2(XjtXit),P<rand(1)
在这里插入图片描述

其中,sign函数表示对寻找食物的方向。整体来看(1)式可以看作个体周围扰动(P>rand),领域个体和最优个体引导(P<rand),平衡因子为:
μ = K ⋅ ( 1 − t / t max ⁡ ) K = sin ⁡ ( 2 ⋅ r a n d ) + 1 (2) \mu=K\cdot(1-t / t_{\max} )\\K=\sin(2\cdot rand )+1\tag{2} μ=K(1t/tmax)K=sin(2rand)+1(2)
在这里插入图片描述

平衡因子通过参数K控制,整体呈线性递减。PS:这里可以改进为非线性因子

群体觅食

鸭群寻找食物后,即有足够的食物可以满足鸭群的觅食:
X i t + 1 = { X i t + μ ⋅ ( X l e a d e r t − X i t ) , f ( X i t ) > f ( X i t + 1 ) X i t + K F 1 ⋅ ( X l e a d e r t − X i t ) + K F 2 ⋅ ( X k t − X j t ) , e l s e (3) \boldsymbol{X}_i^{t+1}=\begin{cases}\boldsymbol{X}_i^t+\mu\cdot(\boldsymbol{X}_{leader}^t-\boldsymbol{X}_i^t),f(X_i^t)>f(X_i^{t+1})\\\boldsymbol{X}_i^t+KF_1\cdot(\boldsymbol{X}_{leader}^t-\boldsymbol{X}_i^t)+KF_2\cdot(\boldsymbol{X}_k^t-\boldsymbol{X}_j^t),else\end{cases}\tag{3} Xit+1={Xit+μ(XleadertXit),f(Xit)>f(Xit+1)Xit+KF1(XleadertXit)+KF2(XktXjt),else(3)
参数可以表述为:
C F i   o r   K F i ← 1 F P ⋅ r a n d ( 0 , 1 ) ( i = 1 , 2 ) (4) CF_i\mathrm{~or~}KF_i\leftarrow\frac1{FP}\cdot rand(0,1)(i=1,2)\tag{4} CFi or KFiFP1rand(0,1)(i=1,2)(4)
其中,FP为常数0.618。
在这里插入图片描述

伪代码

在这里插入图片描述

3.结果展示

使用测试框架,测试DSA性能 一键run.m

CEC2005-F7
在这里插入图片描述

Frieddamn检验

在这里插入图片描述

探索与开发

在这里插入图片描述

种群空间搜索图

在这里插入图片描述

4.参考文献

[1] Zhang M, Wen G, Yang J. Duck swarm algorithm: A novel swarm intelligence algorithm. arXiv 2021[J]. arXiv preprint arXiv:2112.13508.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值