【智能算法】花朵授粉算法(FPA)原理及实现

本文介绍了Yang等人在2012年提出的鸭群算法(FPA),模仿自然界花朵授粉过程,分为全局授粉和局部授粉两个阶段。算法利用昆虫的移动特性进行种群优化,通过莱维飞行模拟和局部随机游走实现搜索。结果展示了算法在CEC2005-F9问题上的性能,强调其在智能算法中的便捷性和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述


1.背景

2012年,Yang等人受到自然界花朵授粉过程启发,提出了鸭群算法(Flower Pollination Algorithm, FPA)。

2.算法原理

2.1算法思想

FPA基于自然界花朵授粉过程,主要分为两个阶段:全局授粉和局部授粉

2.2算法过程

全局授粉

在全局授粉中,花粉由昆虫等传粉媒介携带。由于昆虫通常可以飞行和移动的范围更大,花粉可以传播很远的距离,这保证了最适者的授粉和繁殖:
x i t + 1 = x i t + L ( x i t − g ∗ ) (1) \mathbf{x}_i^{t+1}=\mathbf{x}_i^t+L(\mathbf{x}_i^t-\mathbf{g}_*)\tag{1} xit+1=xit+L(xitg)(1)
其中,g*为最优授粉者。参数L是授粉的强度,本质上是一个步长。由于昆虫可能会以不同的距离步长进行长距离移动,这里采用莱维飞行模拟:
L ∼ λ Γ ( λ ) sin ⁡ ( π λ / 2 ) π 1 s 1 + λ , ( s ≫ s 0 > 0 ) (2) \begin{aligned}L\sim\frac{\lambda\Gamma(\lambda)\sin(\pi\lambda/2)}{\pi}\frac{1}{s^{1+\lambda}},\quad(s\gg s_{0}>0)\end{aligned}\tag{2} LπλΓ(λ)sin(πλ/2)s1+λ1,(ss0>0)(2)

局部授粉

局部授粉可以表述为:
x i t + 1 = x i t + ϵ ( x j t − x k t ) (3) \mathbf{x}_i^{t+1}=\mathbf{x}_i^t+\epsilon(\mathbf{x}_j^t-\mathbf{x}_k^t)\tag{3} xit+1=xit+ϵ(xjtxkt)(3)
这里,xj,xk为xi领域中其他授粉者,参数为[0,1]随机数,实际进行局部随机游走。

伪代码

在这里插入图片描述

3.结果展示

使用测试框架,测试FPA性能 一键run.m

CEC2005-F9
在这里插入图片描述

箱型图

在这里插入图片描述

探索与开发

在这里插入图片描述

种群空间搜索图

在这里插入图片描述

4.参考文献

[1] Yang X S. Flower pollination algorithm for global optimization[C]//International conference on unconventional computing and natural computation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 240-249.

<think>好的,我现在需要处理用户的查询,用户想查找与花朵相关的代码示例。首先,我得仔细分析用户的请求。用户提到参考的引用中有关于Iris花朵分类的内容,特别是引用[1]提到了使用EstimatorDNNClassifier来预测不同种类的鸢尾花。所以,我应该优先考虑这部分内容,看看有没有相关的代码示例。 接下来,我需要检查用户提供的引用材料,确保引用的正确性。引用[1]确实涉及花朵分类的模型,使用TensorFlow的数值特征列。用户可能对机器学习如何应用于花朵分类感兴趣,所以提供TensorFlow的代码示例是合适的。另外,引用[3]提到了使用Node.js抓取LeetCode题目,但用户的问题是关于花朵的代码,这可能关联性不大,但如果有其他相关引用需要检查的话,可能需要进一步确认。不过,根据现有引用,引用[1]和引用[4]可能更相关。 然后,我需要考虑用户可能的实际需求。他们可能是在学习机器学习,特别是分类问题,或者需要具体的代码来实现花朵分类。因此,提供TensorFlow的代码示例会比较有帮助。同时,引用[4]展示了如何通过提示获取信息,但用户明确想要代码,所以这部分可能作为补充,比如如何构造数据集或预处理数据。 接下来,我要确保代码的正确性和符合用户的可视化要求。引用[1]中的示例使用了DNNClassifier,但用户可能需要一个更完整的示例,包括数据加载、特征列定义、模型训练和评估。因此,我需要构造一个完整的代码块,可能需要参考标准的TensorFlow Iris数据集处理流程。 此外,用户可能需要了解如何应用不同的特征列,比如分类特征,但根据引用[1],当前示例只用了数值特征,所以可能需要补充说明其他特征的处理方法,但用户的问题主要是查找现有代码,所以可能不需要深入。 最后,生成相关问题时要围绕花朵相关的代码应用,比如不同框架的实现、数据预处理、模型评估等。确保问题覆盖用户可能感兴趣的扩展方向,帮助他们进一步学习。</think>以下是几个与花朵分类相关的代码示例和框架应用: ### 1. TensorFlow花朵分类(基于Iris数据集) ```python import tensorflow as tf from sklearn.datasets import load_iris # 加载数据集 iris = load_iris() X = iris.data y = iris.target # 定义特征列 feature_columns = [tf.feature_column.numeric_column(key="x", shape=[4])] # 构建DNN分类器 classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, hidden_units=[10, 10], n_classes=3) # 训练模型 train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn( x={"x": X}, y=y, num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=2000) ``` (基于引用[1]中提到的EstimatorDNNClassifier框架实现)[^1] ### 2. PyTorch花朵图像分类 ```python import torch from torchvision import datasets, transforms # 数据预处理 transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor() ]) # 加载数据集 dataset = datasets.ImageFolder('path/to/flowers', transform=transform) dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True) # 定义CNN模型 class FlowerCNN(torch.nn.Module): def __init__(self): super().__init__() self.conv1 = torch.nn.Conv2d(3, 16, 3) self.pool = torch.nn.MaxPool2d(2, 2) self.fc1 = torch.nn.Linear(16*111*111, 5) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = x.view(-1, 16*111*111) return self.fc1(x) ``` ### 3. 数据预处理示例(Scikit-learn) ```python from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split # 标准化特征 scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # 划分数据集 X_train, X_test, y_train, y_test = train_test_split( X_scaled, y, test_size=0.2, random_state=42) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值