【智能算法】花朵授粉算法(FPA)原理及实现

在这里插入图片描述


1.背景

2012年,Yang等人受到自然界花朵授粉过程启发,提出了鸭群算法(Flower Pollination Algorithm, FPA)。

2.算法原理

2.1算法思想

FPA基于自然界花朵授粉过程,主要分为两个阶段:全局授粉和局部授粉

2.2算法过程

全局授粉

在全局授粉中,花粉由昆虫等传粉媒介携带。由于昆虫通常可以飞行和移动的范围更大,花粉可以传播很远的距离,这保证了最适者的授粉和繁殖:
x i t + 1 = x i t + L ( x i t − g ∗ ) (1) \mathbf{x}_i^{t+1}=\mathbf{x}_i^t+L(\mathbf{x}_i^t-\mathbf{g}_*)\tag{1} xit+1=xit+L(xitg)(1)
其中,g*为最优授粉者。参数L是授粉的强度,本质上是一个步长。由于昆虫可能会以不同的距离步长进行长距离移动,这里采用莱维飞行模拟:
L ∼ λ Γ ( λ ) sin ⁡ ( π λ / 2 ) π 1 s 1 + λ , ( s ≫ s 0 > 0 ) (2) \begin{aligned}L\sim\frac{\lambda\Gamma(\lambda)\sin(\pi\lambda/2)}{\pi}\frac{1}{s^{1+\lambda}},\quad(s\gg s_{0}>0)\end{aligned}\tag{2} LπλΓ(λ)sin(πλ/2)s1+λ1,(ss0>0)(2)

局部授粉

局部授粉可以表述为:
x i t + 1 = x i t + ϵ ( x j t − x k t ) (3) \mathbf{x}_i^{t+1}=\mathbf{x}_i^t+\epsilon(\mathbf{x}_j^t-\mathbf{x}_k^t)\tag{3} xit+1=xit+ϵ(xjtxkt)(3)
这里,xj,xk为xi领域中其他授粉者,参数为[0,1]随机数,实际进行局部随机游走。

伪代码

在这里插入图片描述

3.结果展示

使用测试框架,测试FPA性能 一键run.m

CEC2005-F9
在这里插入图片描述

箱型图

在这里插入图片描述

探索与开发

在这里插入图片描述

种群空间搜索图

在这里插入图片描述

4.参考文献

[1] Yang X S. Flower pollination algorithm for global optimization[C]//International conference on unconventional computing and natural computation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 240-249.

  • 29
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值