【智能算法】青蒿素优化算法(AO)原理及实现


1.背景

2024年,C Yuan受到青蒿素药物治疗疟疾过程启发,提出了青蒿素优化算法(Artemisinin Optimization, AO)。

在这里插入图片描述
在这里插入图片描述

2.算法原理

2.1算法思想

AO灵感来自于疟疾的青蒿素药物治疗过程,该过程涉及全面根除人体内的疟疾寄生虫。AO包括三个优化阶段:模拟全局探索的全面消除阶段,局部开发的局部清除阶段,以及增强算法逃避局部最优能力的后巩固阶段

在这里插入图片描述

2.2算法过程

全面消除阶段

在疟疾治疗的初始阶段,给病人更大剂量的药物,以迅速控制疾病的进展。青蒿素一旦被吸收,就会随着血液被输送到人体的各个部位而扩散到全身。药物扩散过程:
{ a i , j t + 1 = a i , j t + c × a i , j t × ( − 1 ) t , r a n d < 0.5 a i , j t + 1 = a i , j t + c × b e s t j t × ( − 1 ) t , r a n d > 0.5 (1) \left.\left\{\begin{matrix}\mathrm{a_{i,j}^{t+1}=a_{i,j}^{t}+c\times a_{i,j}^{t}\times(-1)^{t},rand<0.5}\\\mathrm{a_{i,j}^{t+1}=a_{i,j}^{t}+c\times best_{j}^{t}\times(-1)^{t},rand>0.5}\end{matrix}\right.\right.\tag{1} {ai,jt+1=ai,jt+c×ai,jt×(1)t,rand<0.5ai,jt+1=ai,jt+c×bestjt×(1)t,rand>0.5(1)
青蒿素类药物在人体内的扩散遵循药代动力学原理,考虑到药物浓度会随着时间的推移而降低,c表示药物浓度在人体内的衰减指数,青蒿素药物浓度的衰减可以用单室模型描述:
d C d t = − k × C C ( t ) = C 0 × e ( − k × t ) (2) \frac{dC}{dt}=-k\times C\\C(t)=C_{0}\times e^{(-k\times t)}\tag{2} dtdC=k×CC(t)=C0×e(k×t)(2)
因此,青蒿素药物浓度的指数c表述为:
c = 1 × e − ( 4 × f M a x f ) (3) c=1\times e^{-(4\times\frac f{Maxf})}\tag{3} c=1×e(4×Maxff)(3)
概率系数K表述为:
K = 1 − f 1 / 6 M a x f 1 / 6 (4) K=1-\frac{f^{1/6}}{Maxf^{1/6}}\tag{4} K=1Maxf1/6f1/6(4)
综合淘汰阶段策略:
{ a i , j t + 1 = a i , j t + c × a i , j t × ( − 1 ) t , r a n d < 0.5 a i , j t + 1 = a i , j t + c × b e s t j t × ( − 1 ) t , r a n d > 0.5 , r 1 < K (5) \left.\left\{\begin{matrix}a_{i,j}^{t+1}=a_{i,j}^{t}+c\times a_{i,j}^{t}\times(-1)^{t},\mathrm{rand}<0.5\\a_{i,j}^{t+1}=a_{i,j}^{t}+c\times best_{j}^{t}\times(-1)^{t},rand>0.5\end{matrix}\right.,r_{1}<K\right.\tag{5} {ai,jt+1=ai,jt+c×ai,jt×(1)t,rand<0.5ai,jt+1=ai,jt+c×bestjt×(1)t,rand>0.5,r1<K(5)
在最初的治疗阶段之后,随着疾病得到控制,治疗过渡到维持阶段,以确保彻底治愈疟疾。
在这里插入图片描述

局部清除阶段

局部清除阶段的目标是消除体内任何残留的疟疾寄生虫,防止其繁殖和疟疾症状的复发。在这一阶段,患者继续接受低剂量青蒿素及其衍生物的治疗,以确保完全根除疟疾寄生虫,尽量减少在人体内发生不良反应的风险。局部清除阶段策略:
a i t + 1 = a b 3 t + d × ( a b 1 t − a b 2 t ) , i f r a n d < F i t n o r m ( i ) F i t n o r m ( i ) = f i t ( i ) − min ⁡ ( f i t ) max ⁡ ( f i t ) − min ⁡ ( f i t ) b 1 , b 2 , b 3 ∼ U ( 1 , N ) , b 1 ≠ b 2 ≠ b 3 (6) a_{i}^{t+1}=a_{b_{3}}^{t}+d\times\left(a_{b_{1}}^{t}-a_{b_{2}}^{t}\right),if rand<Fit_{norm}(i)\\Fit_{norm}(i)=\frac{fit(i)-\min{(fit)}}{\max(fit)-\min{(fit)}}\\b_{1},b_{2},b_{3}\sim U(1,N),b_{1}\neq b_{2}\neq b_{3}\tag{6} ait+1=ab3t+d×(ab1tab2t),ifrand<Fitnorm(i)Fitnorm(i)=max(fit)min(fit)fit(i)min(fit)b1,b2,b3U(1,N),b1=b2=b3(6)

后巩固阶段

对疾病的严重程度漠不关心和治疗期间的松懈是危险的有害因素,在这种策略中,假设不活跃的寄生虫形式仍然存在于人体内。不幸的是,尽管这些休眠寄生虫持续存在,一些患者仍可能再次出现疟疾。该策略表述为:
{ a i , j t + 1 = a i , j t , i f r a n d < 0.05 a i , j t + 1 = b e s t i , j , i f r a n d < 0.2 (7) \left\{\begin{matrix}a_{i,j}^{t+1}=a_{i,j}^{t},if rand<0.05\\a_{i,j}^{t+1}=best_{i,j},if rand<0.2\end{matrix}\right.\tag{7} {ai,jt+1=ai,jt,ifrand<0.05ai,jt+1=besti,j,ifrand<0.2(7)

在这里插入图片描述
流程图

在这里插入图片描述

伪代码

在这里插入图片描述

3.结果展示

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Yuan C, Zhao D, Heidari A A, et al. Artemisinin optimization based on malaria therapy: Algorithm and applications to medical image segmentation[J]. Displays, 2024: 102740.

5.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值