【论文复现】多策略集成灰狼优化算法及其在特征选择中的应用


在这里插入图片描述

1.摘要

本文提出了一种多策略集成灰狼优化算法(MEGWO),用于克服传统灰狼优化算法(GWO)在解决各种函数优化问题时所面临的单一搜索策略的局限性。MEGWO算法结合了三种不同的搜索策略:1.增强全局最佳引导策略通过全面探索当前最佳解周围的搜索空间,增强了局部搜索能力;2.可适应的协同策略通过将一维更新操作融入GWO框架,提升了种群的多样性,从而加强了全局搜索能力;3.分散觅食策略则通过自适应参数引导部分搜索个体探索有前景的区域,优化了开发与探索之间的平衡。

PS:主要复现MEGWO算法~

2.灰狼算法GWO原理

【智能算法】灰狼算法(GWO)原理及实现

3.改进策略

增强全局最佳引导策略

本文提出了一种增强全局最佳引领策略,灵感来自全局最佳和谐搜索(GHS)中的全局最佳策略。在GHS中,最佳和谐被视为全局最佳解,音调调整步骤通过随机选择最佳和谐向量中的一个元素来改进局部搜索能力:
X i , d t + 1 = { X α , j a n d t , r a n d 1 < G R X α , d t + 2 ⋅ φ ⋅ r 3 ⋅ ( X m , d t − X n , d t ) , o t h e r w i s e \left.X_{i,d}^{t+1}=\left\{ \begin{array} {ll}X_{\alpha,j_{and}}^t, & rand_1<GR \\ X_{\alpha,d}^t+2\cdot\varphi\cdot r_3\cdot(X_{m,d}^t-X_{n,d}^t), & \mathrm{otherwise} \end{array}\right.\right. Xi,dt+1={Xα,jandt,Xα,dt+2φr3(Xm,dtXn,dt),rand1<GRotherwise
其中, G R GR GR表示全局最佳引导率,为[0,1]之间的常数。
在这里插入图片描述

适应性合作狩猎策略

灰狼优化算法(GWO)通过全维更新操作在优化非可分函数时表现良好,但对于多峰和可分函数可能无法获得高质量解。相比之下,人工蜂群算法(ABC)的单维更新操作增强了全局搜索能力,特别适用于多峰和可分函数。受此启发,本文将一维更新操作引入GWO,形成适应性合作狩猎策略。在该策略中,搜索个体根据概率SR交替采用一维和全维更新操作,从而平衡开发和探索:
S R = S R m a x − ( S R m a x − S R m i n ) ⋅ t / L SR=SR_{\mathrm{max}}-(SR_{\mathrm{max}}-SR_{\mathrm{min}})\cdot t/L SR=SRmax(SRmaxSRmin)t/L

在这里插入图片描述

分散觅食策略

在灰狼群体栖息地发生食物短缺时,部分狼群会分散到新的区域觅食以求生存,这种分散行为增加了灰狼迁移到食物丰富区域的可能性,从而提高了在恶劣环境中的生存能力。本文提出了分散觅食策略,部分搜索个体根据分散率(DR)重新定位到搜索空间中有潜力的区域,并更新其位置:
X i , d t + 1 = X i , d t + ρ ⋅ Δ i , d t ⋅ B i , d t Δ i , d t = ( X m , d t − X n , d t ) \begin{aligned} & \boldsymbol{X}_{i,d}^{t+1}=\boldsymbol{X}_{i,d}^t+\rho\cdot\boldsymbol{\Delta}_{i,d}^t\cdot\boldsymbol{B}_{i,d}^t \\ & \boldsymbol{\Delta}_{i,d}^t=(\boldsymbol{X}_{m,d}^t-\boldsymbol{X}_{n,d}^t) \end{aligned} Xi,dt+1=Xi,dt+ρΔi,dtBi,dtΔi,dt=(Xm,dtXn,dt)
其中,参数表述为:
B i , d t = { 1 , r a n d 3 > D R 0 , o t h e r w i s e \left.\boldsymbol{B}_{i,d}^t=\left\{ \begin{array} {cl}1, & rand_3>DR \\ 0, & \mathrm{otherwise} \end{array}\right.\right. Bi,dt={1,0,rand3>DRotherwise

流程图

在这里插入图片描述

4.结果展示

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

5.参考文献

[1] Tu Q, Chen X, Liu X. Multi-strategy ensemble grey wolf optimizer and its application to feature selection[J]. Applied Soft Computing, 2019, 76: 16-30.

6.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值