工程化磁性Fe3O4纳米团簇,实现高效射频纳米加热

e631a82ab236272d702d045f4e3d7639.jpeg

第一作者:Zuyang Ye  

通讯作者:殷亚东

通讯单位:加州大学河滨分校


论文速览:

本研究通过合成和表面改性磁性Fe3O4纳米团簇,实现了高效的射频纳米加热。研究发现,直径为58 nm的Fe3O4纳米团簇在43 kA/m和413 kHz的交变磁场下,具有高达1499 W/g Fe的比吸热率(SAR),是之前研究中使用的商业铁氧化物核的两倍多。

通过表面改性,使用可渗透的间苯二酚-甲醛树脂(RFR)聚合物层显著增强了纳米团簇在复杂的冷冻保护溶液中的胶体稳定性,同时保持了其出色的加热能力。

Fe3O4@RFR纳米团簇在10 mg Fe/mL的浓度下,实现了175 °C/min的高平均加热速率,并成功应用于猪髂动脉的纳米加热,突显了其在提高冷冻保存效率方面的潜力。

49ab67484411b1e00b588e93cef546b0.jpeg


图文导读:

2e2f7b77731fe4042951bfb45e8ce35f.jpeg


图1:展示了平均直径为58 nm的典型Fe3O4纳米团簇的透射电子显微镜图像(TEM),以及Fe3O4纳米团簇的平均直径与前驱体溶液中Ni2+/Fe3+摩尔比的关系。X射线衍射(XRD)图案和Fe3O4纳米团簇的磁滞回线进一步证明了其尺寸依赖的加热性能。


c12f2e7b96698004e3f9b99e6b15ae05.jpeg

图2:描述了不同尺寸Fe3O4纳米团簇在水下交变磁场(413 kHz和43 kA/m)中的加热性能和平均比吸热率(SAR)。


e43f9208e400b4f5d99c59165fae8f40.jpeg

图3:展示了Fe3O4@RFR纳米团簇的透射电子显微镜图像,以及不同凝聚时间下Fe3O4@RFR纳米团簇在VS55溶液中的紫外-可见吸收峰强度随时间的变化。

50a4767ee110c04a989fd437d18b74ed.jpeg

图4:展示了Fe3O4@RFR纳米团簇在水和VS55中不同核心直径的SAR测量结果,以及不同厚度RFR壳层的Fe3O4纳米团簇从低温开始的加热特性和加热速率。

bb6dab1e3094fab3ac6dd3789037a160.jpeg

图5:展示了人真皮成纤维细胞(HDF)在不同Fe3O4@RFR浓度下的生存率,以及在VS55介质中逐步加载和卸载Fe3O4@RFR的细胞毒性测试结果。


亮点介绍:

1. 高效加热性能:研究发现,直径为58 nm的Fe3O4纳米团簇具有高达1499 W/g Fe的比吸热率,显著优于商业铁氧化物核。

2. 表面改性增强稳定性:通过RFR聚合物层的表面改性,显著提高了纳米团簇在复杂冷冻保护溶液中的胶体稳定性。

3. 快速均匀加热:Fe3O4@RFR纳米团簇在10 mg Fe/mL的浓度下实现了175 °C/min的高平均加热速率,有助于提高冷冻保存样本的后解冻存活率。

4. 生物相容性:细胞毒性测试表明,Fe3O4@RFR纳米团簇具有良好的生物相容性,即使在较高浓度下也不影响细胞生存率。

5. 成功应用于组织纳米加热:该纳米团簇已成功应用于猪髂动脉的纳米加热,为冷冻保存和纳米加热技术在组织和器官保存方面的应用铺平了道路。


文献信息:

标题: Engineering Magnetic Nanoclusters for Highly Efficient Heating in Radio-Frequency Nanowarming

期刊: Nano Letters

 

分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代码示例不仅展示了理论知识在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值