COFs大咖,新加坡国立江东林最新Nature Synthesis

82d18e874be8cd6c5d23872de1653bf1.jpeg 第一作者:Yongzhi Chen, Ruoyang Liu, Yuanyuan Guo

通讯作者:江东林 

通讯单位:新加坡国立大学 

论文速览

共价有机框架(COFs)具有有序的π骨架和对齐的纳米孔,可能是理想的光催化材料,但仍未开发用于此用途。本研究成功开发了一种高效的光催化剂,利用系统设计的COFs的π骨架和孔洞,实现了通过水和空气光合成过氧化氢(H2O2)。

这种光催化剂具有给体-受体型排列,能够在光照下转化为催化支架,具有密集的氧还原和水氧化催化位点,并通过空间分离的给体和受体柱来防止电荷复合,从而促进快速电荷传输。

孔壁被设计成亲水性的,使水和溶解氧能够通过一维通道,借助毛细效应到达催化位点。这些COFs作为光催化剂,仅使用水、空气和光,在批量反应器中实现了高达7.2 mmol g-1 h-1的生产速率,18.0%的最佳表观量子产率和0.91%的太阳能到化学能的转换效率。

此外,集成这些COFs的流动反应器能够在环境条件下连续生产纯净的H2O2溶液,产量超过15升,并展现出超过两周使用时间的操作稳定性。 

图文导读

cbbfe49db1e8b759b71198f714bf854c.jpeg 图1:光催化COFs设计用于制造H2O2的概念,包括六价三苯基结提供高密度的催化位点,以及具有亲水性侧链的一维通道,促进水和溶解氧的传输。

  31c255afebc73e6720bee647298b66b4.jpeg 图2:TP-DPBD1O-COF、TP-DPBD2O-COF和TP-DPBD3O-COF的2D供体-受体骨架和堆叠结构的示意图及重建晶体结构。

  5dc6adfb4576b986c0fe5df77fc5eed4.jpeg

3:TP-DPBD3O-COF的化学和晶体结构,包括红外光谱、核磁共振谱、扫描电子显微镜图像、X射线衍射图谱和晶体结构单元的顶视图和侧视图。

  d1733fe0630149f5980e3e1e36219a8a.jpeg 图4:TP-DPBD1O-COF、TP-DPBD2O-COF和TP-DPBD3O-COF的光物理和电化学性质,包括固态电子吸收光谱、投影态密度、荧光衰减曲线、瞬态吸收光谱、光电流密度和Tauc图。

  66460706f38a0ab05d2ab20c356c175e.jpeg 图5:TP-DPBD1O-COF、TP-DPBD2O-COF和TP-DPBD3O-COF的氢键和前沿轨道,包括分子内和分子间氢键以及最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)。

  fcdbf796598562f236b34d0377d2da7b.jpeg 图6:定制的1D通道和水蒸气吸附,包括氮气吸附等温线、孔径分布、孔体积和水蒸气吸附等温线。

  77674703f9adec11459e4ddcf6058c5c.jpeg 图7:光催化性能和活性位点,包括批量反应器性能、H2O2生产率、表观量子效率、光电流密度和电子顺磁共振谱。 

总结展望

本研究通过精心设计的COFs材料,实现了水和空气到过氧化氢的高效光合成。通过构建供体-受体型的π骨架和优化的1D亲水通道,作者成功解决了光催化过程中电荷载流子生成不足、催化位点数量有限和电荷及反应物及时传输的问题。

所得到的COFs光催化剂不仅在批量反应器中表现出色,还在流动系统中展现了连续生产H2O2的潜力,同时保持了良好的操作稳定性。这些发现为设计新型光催化剂提供了重要的结构设计原则,并为通过人工光合作用可持续生产化学品铺平了道路。 

文献信息

标题:Hierarchical assembly of donor–acceptor covalent organic frameworks for photosynthesis of hydrogen peroxide from water and air 

期刊:Nature Synthesis 


分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,比普通傅里叶变换,其性能更为出色。 MATLAB是一种强的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代码示例不仅展示了理论知识在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值