多组学关联分析实操(二)| O2PLS

       之前我们了解了基于相关性进行的一些多组学关联分析。那么在SCI论文中,还有一些比较受欢迎的多组学联合分析方法——机器学习。接下来,小易带大家学习下多组学关联分析“重器”—— O2PLS。

O2PLS简介

       O2PLS方法全称为Two-Way Orthogonal PLS,即双向正交偏最小二乘法。该方法同PCA, PLS and CCA等方法相比,考虑了不同场景下数据集中的大小,规模,分布和实验误差等因素,建模过程中考虑了不同数据集间 joint, specific和residual三部分,适用于复杂场景下的数据挖掘,属于非监督建模的一种。

       O2PLS方法的R语言版本于2018年发表于BMC Bioinformatics杂志,可用于挖掘多组学不同维度数据间的关联特征。

       该模型构建包括三个步骤:

1)交叉验证(Cross-validating):确定O2PLS成分个数;

2 )拟合(fitting):拟合O2PLS模型;

3 )归纳及可视化(Summarizing & visualizing):对结果进行总结及可视化。

O2PLS应用实践

       我们以代谢组与微生物为例,使用O2PLS进行关联分析。

1 输入文件准备

1.1 代谢组含量

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值