Sage Husa滤波例程,基于EKF,MATLAB程序演示

在这里插入图片描述

本MATLAB代码实现了基于扩展卡尔曼滤波器( E K F EKF EKF)的 S a g e − H u s a Sage-Husa SageHusa滤波算法,主要用于对非线性系统状态的估计。以下是代码的详细介绍,包括主要功能、实现步骤及其应用场景

运行结果

状态曲线对比:
在这里插入图片描述

误差对比:
在这里插入图片描述

误差平均值输出(命令行截图):
在这里插入图片描述

代码介绍

功能概述

  • 状态估计:通过EKF和Sage-Husa算法估计非线性系统的状态。
  • 噪声模拟:在观测值中添加过程噪声和观测噪声,以模拟真实环境下的系统行为。
  • 结果可视化:绘制真实状态、观测值和滤波估计结果,以便进行比较分析。

主要参数

  • 时间设置

    • dt:时间步长,设置为0.1秒。
    • T:总时间,设置为20秒。
  • 系统噪声

    • processNoiseCov:过程噪声协方差,影响状态转移模型的噪声。
    • measurementNoiseCov:观测噪声协方差,影响观测模型的噪声。

初始化

  • 创建真实状态、观测值和估计值的数组:
    • x_true:真实状态数组。
    • z:观测值数组。
    • x_est_EKF:EKF估计值数组。
    • x_est_SAGEHUSA:Sage-Husa EKF估计值数组。

系统模型和观测值模拟

使用一个非线性系统模型(通过正弦函数实现)生成真实状态,并在观测值中添加随机噪声,以模拟真实环境中的观测情况。

结果输出与误差分析

  • 绘制真实状态、观测值、EKF估计和Sage-Husa EKF估计的对比图,以及各自的误差图。

  • 通过图表,用户可以直观地看到不同滤波算法的效果。

  • 计算并输出两种估计方法的平均绝对误差,以量化其性能。

源代码

代码结构如下:
在这里插入图片描述

部分代码如下:

clc; clear; close all; % 清除命令行、工作空间和关闭所有图形窗口
rng(0); % 设置随机种子以保证结果可重复

%% 模拟参数
dt = 0.1;               % 时间步长(0.1秒)
T = 20;                 % 总模拟时间(20秒)
time = 0:dt:T;         % 生成时间向量,从0到T,步长为dt
N = length(time);      % 计算时间步数

%% 系统参数设置
processNoiseCov = 1; % 过程噪声协方差,表示系统模型的不确定性
measurementNoiseCov = 0.5; % 观测噪声协方差,表示测量的不确定性

%% 初始化状态
x_true = zeros(N, 1);   % 初始化真实状态数组
z = zeros(N, 1);         % 初始化观测值数组
x_est_EKF = zeros(N, 1); % 初始化普通EKF估计数组
x_est_SAGEHUSA = zeros(N, 1); % 初始化SAGEHUSA EKF估计数组

% 初始状态设置
x_true(1) = 0.5;         % 设置初始真实状态
x_est_EKF(1) = 0;        % 设置EKF的初始估计为0
x_est_SAGEHUSA(1) = 0;   % 设置SAGEHUSA EKF的初始估计为0

总结

通过本例程,用户可以深入理解基于EKF的Sage-Husa滤波算法的实现过程,以及在非线性系统状态估计中的应用。该代码提供了一种有效的工具,用于分析和比较不同滤波方法在实际应用中的性能。

如有代码定制、讲解等需求,欢迎交流:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB卡尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值