自动控制原理学习笔记(三)

第三章 时域分析

  • 特点:

    • 分析设计直观准确
    • 提供时间响应的全部信息
    • 解析解较繁琐
  • 方法步骤

    1. 传递函数
    2. 通过逆变换求出时域响应 y ( t ) y(t) y(t)
    3. 根据 y ( t ) y(t) y(t)分析系统性能

3.1 典型输入信号

  1. 单位脉冲
  2. 单位阶跃
  3. 单位匀速
  4. 单位加速度
  5. 正弦

3.2 线性系统时域性能指标(稳定系统)

  • 延迟时间 t d t_d td:阶跃响应第一次到达稳态值的50%所需时间
  • 上升时间 t r t_r tr :稳态值10%到90%所用的时间。振荡:0到第一次稳态值所用时间
  • 峰值时间 t p t_p tp:超越终值达到第一个峰值所需时间
  • 超调量 σ p \sigma_p σp:百分比 σ p = y ( t p ) − y ( ∞ ) y ( ∞ ) × 100 % \sigma_p=\dfrac{y(t_p)-y(\infty)}{y(\infty)}\times 100\% σp=y()y(tp)y()×100%
  • 调节时间 t s t_s ts:到达并保持在终值5%或2%误差带内所需的最短时间
  • 振荡次数 N N N:调节时间内,单位阶跃响应穿越稳态值次数的一半

3.3 一阶系统

  • Φ ( s ) = 1 T s + 1 \varPhi(s) = \dfrac{1}{Ts+1} Φ(s)=Ts+11
①单位阶跃响应
  • 响应: y ( t ) = 1 − e − t T y(t)=1-e^{-\frac{t}{T}} y(t)=1eTt
  • y ( T ) = 0.632 y(T)=0.632 y(T)=0.632
  • y ( 3 T ) ≈ 0.95 y(3T)\approx 0.95 y(3T)0.95,即 t s = 3 T t_s=3T ts=3T
  • 无稳态误差
  • 提高快速性:减小时间常数 T T T
  • 由阶跃响应求 T : d y d t ∣ t = 0 = 1 T T: \frac{dy}{dt}|_{t=0}=\frac{1}{T} Tdtdyt=0=T1
②单位脉冲响应
  • 响应: y ( t ) = 1 T e − t T   , t ≥ 0 y(t)=\dfrac{1}{T}e^{-\frac{t}{T}}\ ,t\geq 0 y(t)=T1eTt ,t0
  • y ( 0 ) = 1 T y(0)=\dfrac{1}{T} y(0)=T1
  • y ( T ) = 0.368 1 T y(T)=0.368\dfrac{1}{T} y(T)=0.368T1
③单位斜坡响应
  • y ( t ) = t − T ( 1 − e − t T )   ,   t ≥ 0 y(t)=t-T(1-e^{-\frac{t}{T}})\ ,\ t\geq 0 y(t)=tT(1eTt) , t0
  • 稳态误差 e = T e=T e=T (减小T可以减小稳态误差)
④单位匀加速度响应
  • y ( t ) = 1 2 t 2 − T t + T 2 ( 1 − e − t T )   , t ≥ 0 y(t)=\dfrac{1}{2}t^2-Tt+T^2(1-e^{-\frac{t}{T}})\ ,t\geq 0 y(t)=21t2Tt+T2(1eTt) ,t0

3.4线性定常系统重要特性

  • 系统对输入信号导数的响应=系统对原信号的响应的导数
  • 积分同理,积分常数由零输出时的初始条件决定

3.5 二阶系统

  • $\varPhi(s) = \dfrac{Y(s)}{R(s)} = \dfrac{\omega_n2}{s2+2\zeta\omega_n s+\omega_n^2} $
  • 闭环极点: s 1 , 2 = − ζ ω n ± ω n ζ 2 − 1 s_{1,2}=-\zeta\omega_n \pm \omega_n\sqrt{\zeta^2-1} s1,2=ζωn±ωnζ21
  • 开环传函: G ( s ) = ω n 2 s ( s + 2 ζ ω n ) G(s) = \dfrac{\omega_n^2}{s(s+2\zeta\omega_n)} G(s)=s(s+2ζωn)ωn2
3.5.1 二阶系统单位阶跃响应
①★欠阻尼★
  • 0 < ζ < 1 0<\zeta<1 0<ζ<1
  • s 1 , 2 = − ζ ω n ± j ω n 1 − ζ 2 s_{1,2}=-\zeta\omega_n \pm \mathrm j \omega_n\sqrt{1-\zeta^2} s1,2=ζωn±jωn1ζ2
  • 设有阻尼振荡频率 ω d = ω n 1 − ζ 2 \omega_d = \omega_n\sqrt{1-\zeta^2} ωd=ωn1ζ2
  • 输入单位阶跃信号,可得输出:

Y ( s ) = Φ ( s ) 1 s = 1 s − s + ζ ω n ( s + ζ ω n ) 2 + ω d 2 − ζ ω n ( s + ζ ω n ) 2 + ω d 2 \begin{aligned} Y(s) &= \varPhi(s)\dfrac{1}{s} \\ &= \dfrac{1}{s} - \dfrac{s+\zeta\omega_n}{(s+\zeta\omega_n)^2+\omega_d^2} - \dfrac{\zeta\omega_n}{(s+\zeta\omega_n)^2+\omega_d^2} \\ \end{aligned} Y(s)=Φ(s)s1=s1(s+ζωn)2+ωd2s+ζωn(s+ζωn)2+ωd2ζωn

  • 利用Laplace变换的位移性质,可得

y ( t ) = 1 − e − ζ ω n t ( cos ⁡ ω d t + ζ ω n ω d sin ⁡ ω d t ) = 1 − e − ζ ω n t 1 1 − ζ 2 sin ⁡ ( ω d t + θ ) , t ≥ 0 \begin{aligned} y(t) &= 1-e^{-\zeta\omega_n t}(\cos \omega_d t + \frac{\zeta\omega_n}{\omega_d}\sin\omega_d t) \\ &= 1-e^{-\zeta\omega_n t}\dfrac{1}{\sqrt{1-\zeta^2}}\sin(\omega_d t+\theta) , t\geq 0\\ \end{aligned} y(t)=1eζωnt(cosωdt+ωdζωnsinωdt)=1eζωnt1ζ2 1sin(ωdt+θ),t0

其 中 θ = arctan ⁡ 1 − ζ 2 ζ   或   ζ = cos ⁡ θ 其中 \theta = \arctan \dfrac{\sqrt{1-\zeta^2}}{\zeta}\ 或\ \zeta = \cos\theta\\ θ=arctanζ1ζ2   ζ=cosθ

  • 稳态分量、暂态分量
  • 包络线: y ( t ) = 1 ± e − ζ ω n t 1 − ζ 2 y(t)=1 \pm \dfrac{e^{-\zeta\omega_n t}}{\sqrt{1-\zeta^2}} y(t)=1±1ζ2 eζωnt
  • 上升时间 t r = π − θ ω n 1 − ζ 2 t_r=\dfrac{\pi-\theta}{\omega_n\sqrt{1-\zeta^2}} tr=ωn1ζ2 πθ, 系统快速性与 ω n \omega_n ωn成正比
  • 峰值时间 t p = π ω n 1 − ζ 2 t_p=\dfrac{\pi}{\omega_n\sqrt{1-\zeta^2}} tp=ωn1ζ2 π
  • 超调量 σ p = e − ζ π 1 − ζ 2 × 100 % = e − π cot ⁡ θ \sigma_p=e^{-\dfrac{\zeta\pi}{\sqrt{1-\zeta^2}}}\times100\%=e^{-\pi \cot\theta} σp=e1ζ2 ζπ×100%=eπcotθ
  • 调节时间$t_s = \begin{cases}\dfrac{4}{\xi\omega_n}&,\Delta=0.02\ \dfrac{3}{\xi\omega_n}&,\Delta=0.05\end{cases} $
  • 振荡次数 N = { 2 1 − ζ 2 π ζ Δ = 0.2 1.5 1 − ζ 2 π ζ Δ = 0.05 N = \begin{cases}\dfrac{2\sqrt{1-\zeta^2}}{\pi\zeta}&&\Delta = 0.2\\\dfrac{1.5\sqrt{1-\zeta^2}}{\pi\zeta}&&\Delta = 0.05 \end{cases} N=πζ21ζ2 πζ1.51ζ2 Δ=0.2Δ=0.05
②无阻尼
  • ζ = 0 \zeta=0 ζ=0
  • y ( t ) = 1 − cos ⁡ ω n t   ,   t ≥ 0 y(t) = 1-\cos\omega_n t\ ,\ t\geq 0 y(t)=1cosωnt , t0
  • 等幅振荡,调节时间正无穷
③临界阻尼
  • ζ = 1 \zeta=1 ζ=1
  • y ( t ) = 1 − e − ω n t ( 1 + ω n t )   ,   t ≥ 0 y(t) = 1-e^{-\omega_n t}(1+\omega_n t)\ ,\ t\geq 0 y(t)=1eωnt(1+ωnt) , t0
  • y ′ ( 0 ) = 0 y^\prime(0) = 0 y(0)=0
  • 稳态为 y = 1 y=1 y=1无超调,单调上升
④过阻尼
  • ζ > 1 \zeta>1 ζ>1

    无超调

⑤负阻尼
  • − 1 < ζ < 0 -1<\zeta<0 1<ζ<0
  • 系统不稳定,发散
二阶系统动态性能随极点位置分布的变化规律
  • 左半平面
  • 远离虚轴
3.5.2 二阶系统单位脉冲响应

在这里插入图片描述

  • y ( t p ) = ∫ 0 t p k ( t ) d t = 1 + σ p y(t_p) = \int_0^{t_p}k(t)\mathrm dt=1+\sigma_p y(tp)=0tpk(t)dt=1+σp
无阻尼
  • k ( t ) = ω n sin ⁡ ω n t    , t ≥ 0 k(t)=\omega_n\sin\omega_nt\ \ ,t\geq0 k(t)=ωnsinωnt  ,t0
欠阻尼
临界阻尼
3.5.3 二阶系统单位斜坡响应

3.6 高阶系统

Φ ( s ) = k ∏ j = 1 m ( s − z j ) ∏ i = 1 q ( s − s i ) ∏ k = 1 r ( s 2 + 2 ζ k ω n k s + ω n k 2 ) q + 2 r = n \varPhi(s) = \frac{k\prod\limits_{j=1}^m (s-z_j)}{\prod\limits_{i=1}^q(s-s_i)\prod\limits_{k=1}^r (s^2+2\zeta_k\omega_{nk}s+\omega_{nk}^2)}\\ \\ \\ q+2r=n Φ(s)=i=1q(ssi)k=1r(s2+2ζkωnks+ωnk2)kj=1m(szj)q+2r=n

一些结论
  • 若闭环极点均在左半平面,则暂态分量都将收敛到零
  • 收敛速度取决于:左半平面极点距离虚轴越远越快
    1. 实极点绝对值 ∣ s i ∣ |s_i| si
    2. 复极点实部绝对值 ∣ ζ k ω n k ∣ |\zeta_k\omega_{nk}| ζkωnk
  • 暂态分量与零点相关:
    • 若某极点靠近一零点且与其他极点相距较远,则该暂态分量影响较小
    • 若一对闭环零、极点非常接近,称作一对“偶极子”,该极点对暂态过程几乎没有影响
主导极点

  • 一对共轭极点(或一个实极点)距虚轴最近
  • 且其他极点到虚轴距离均为其5倍以上
  • 虚轴附近无单独闭环零点

则该极点成为高阶系统的主导极点

3.7基于脉冲传递函数的离散系统时域分析 (6.8.1~6.8.2)

  • 输入 r ( t ) = 1 ,   R ( z ) = z z − 1 r(t)=1,\ R(z)=\dfrac{z}{z-1} r(t)=1, R(z)=z1z
  • 输出 y ( k T ) = A + ∑ i = 1 n B i p i k y(kT)=A+\sum\limits_{i=1}^nB_ip_i^k y(kT)=A+i=1nBipik
  • 瞬态响应分量: ∑ i = 1 n B i p i k \sum\limits_{i=1}^nB_ip_i^k i=1nBipik
极点分布与响应
  • 单位圆,详见离散系统稳定性一节

3.8 基于状态空间的时域分析

线性定常连续系统
运动分析
  1. 自由运动——零输入响应
  • u = 0 u=0 u=0
  1. 强迫运动——零状态响应
  • x ( t 0 ) = 0 x(t_0) = 0 x(t0)=0
状态转移矩阵

定义:对于齐次状态方程,若有 x ( t ) = Φ ( t ) x ( 0 ) x(t)=\varPhi(t)x(0) x(t)=Φ(t)x(0), 则称 Φ ( t ) \boldsymbol {\varPhi(t)} Φ(t) 为系统的状态转移矩阵。

  • 若初始时刻不为0,而是 t 0 t_0 t0,则状态转移矩阵 Φ ( t , t 0 ) \varPhi(t, t_0) Φ(t,t0)

  • 对于线性定常连续系统,本质上仍是矩阵指数函数 e A t e^{\boldsymbol At} eAt

  • 性质:

    1. 非奇异: ( e A t ) − 1 = e A ( − t ) (e^{\boldsymbol At})^{-1}=e^{\boldsymbol A(-t)} (eAt)1=eA(t)

    2. A B = B A AB=BA AB=BA 时, e ( A + B ) t = e A t e B t e^{(A+B)t} = e^{At}e^{Bt} e(A+B)t=eAteBt ;

      A B ≠ B A AB\neq BA AB=BA,则 e ( A + B ) t ≠ e A t e B t e^{(A+B)t} \neq e^{At}e^{Bt} e(A+B)t=eAteBt

    3. 微分性质: d d t e A t = A e A t = e A t A \dfrac{\mathrm d}{\mathrm dt}e^{\boldsymbol At} = \boldsymbol Ae^{\boldsymbol At} = e^{\boldsymbol At}\boldsymbol A dtdeAt=AeAt=eAtA (可用于:由 e A t e^{\boldsymbol At} eAt A \boldsymbol A A

    4. 相似变换:

      若P为非奇异阵,即必存在 P − 1 P^{-1} P1 ,则

      • e P − 1 A P t = P − 1 e A t P e^{P^{-1}APt}=P^{-1}e^{At}P eP1APt=P1eAtP
    5. 对角阵情形:

    在这里插入图片描述

    1. Jordan 块

    2. 当A是约当矩阵时:

      在这里插入图片描述

齐次方程求解(零输入)
  • x ˙ = A x \dot x = \boldsymbol A x x˙=Ax , A A A 为nxn阶定常方阵

    • 指数函数的推广: x = e A t x 0 x = e^{\boldsymbol At}x_0 x=eAtx0 , e A t e^{\boldsymbol At} eAt 称为矩阵指数函数

    • 矩阵指数函数定义:

      e A t = d e f = ∑ k = 0 ∞ 1 k ! A k t k = I + A t + 1 2 A 2 t 2 + ⋯ + 1 k ! A k t k e^{\boldsymbol At} =^{def}= \sum\limits_{k=0}^\infty\dfrac{1}{k!}\boldsymbol A^kt^k=I+\boldsymbol At+\dfrac{1}{2}\boldsymbol A^2t^2+\cdots+\dfrac{1}{k!}\boldsymbol A^kt^k eAt=def=k=0k!1Aktk=I+At+21A2t2++k!1Aktk

求取 **矩阵指数函数(状态转移矩阵)**的方法:

  1. 定义法(级数)

    e A t = ∑ k = 0 ∞ 1 k ! A k t k = I + A t + 1 2 A 2 t 2 + ⋯ + 1 k ! A k t k e^{\boldsymbol At}= \sum\limits_{k=0}^\infty\dfrac{1}{k!}\boldsymbol A^kt^k=I+\boldsymbol At+\dfrac{1}{2}\boldsymbol A^2t^2+\cdots+\dfrac{1}{k!}\boldsymbol A^kt^k eAt=k=0k!1Aktk=I+At+21A2t2++k!1Aktk

  2. Laplace变换法

  • Laplace变换: s X ( s ) − x ( 0 ) = A X ( s ) sX(s)-x(0)=\boldsymbol A X(s) sX(s)x(0)=AX(s)

  • X ( s ) = ( s I − A ) − 1 x ( 0 ) X(s) = (s\boldsymbol I -\boldsymbol A)^{-1}x(0) X(s)=(sIA)1x(0)

    e A t = L − 1 [ ( s I − A ) − 1 ] e^{At}=\mathscr L^{-1} [(s\boldsymbol I -\boldsymbol A)^{-1}] eAt=L1[(sIA)1]

    x ( t ) = L − 1 [ ( s I − A ) − 1 ] x ( 0 ) x(t) = \mathscr L^{-1} [(s\boldsymbol I -\boldsymbol A)^{-1}]x(0) x(t)=L1[(sIA)1]x(0)

  1. 凯莱哈密顿
  2. 构造Jordan块
非齐次方程求解

在这里插入图片描述

  1. 积分法
    x ( t ) = e A ( t − t 0 ) x ( t 0 ) + ∫ t 0 t e A ( t − τ ) B u ( τ )   d τ x(t) = e^{A(t-t_0)}x(t_0)+\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)\ \mathrm d\tau x(t)=eA(tt0)x(t0)+t0teA(tτ)Bu(τ) dτ

  2. Laplace 变换法(背下来)

在这里插入图片描述

x ( t ) = L − 1 [ ( s I − A ) − 1 x ( t 0 ) + ( s I − A ) − 1 B U ( s ) ] x(t) = \mathscr L^{-1}[(sI-A)^{-1}x(t_0)+(sI-A)^{-1}BU(s)] x(t)=L1[(sIA)1x(t0)+(sIA)1BU(s)]

离散系统
  • { x ( k + 1 ) = G x ( k ) + H u ( k ) y ( k ) = C x ( k ) + D u ( k ) \begin{cases} \boldsymbol{x}(k+1) &=& \boldsymbol{Gx}(k)+\boldsymbol{Hu}(k)\\ \boldsymbol{y}(k)&=& \boldsymbol{Cx}(k)+\boldsymbol{Du}(k) \end{cases} {x(k+1)y(k)==Gx(k)+Hu(k)Cx(k)+Du(k)
线性定常连续系统状态方程的离散化

G = e A T H = ( ∫ 0 T e A t   d t ) B \boldsymbol G = e^{\boldsymbol AT}\\ \boldsymbol H = (\int_0^Te^{\boldsymbol At}\ \mathrm dt)\boldsymbol B G=eATH=(0TeAt dt)B

线性定常离散系统状态方程的解
  1. 迭代法

x ( k ) = G k x ( 0 ) + ∑ i = 0 k − 1 G k − i − 1 H u ( i ) \boldsymbol x(k) = \boldsymbol G^k \boldsymbol x(0)+\sum_{i=0}^{k-1} \boldsymbol G^{k-i-1}\boldsymbol{Hu}(i) x(k)=Gkx(0)+i=0k1Gki1Hu(i)

  1. Z变换法

在这里插入图片描述

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值