【基础理论】介绍一个概率分布:柯西分布

本文介绍了柯西分布,一种与高斯分布类似的连续概率分布。柯西分布常用于描述共振行为,其在概率密度函数上的特性表现为‘重尾分布’,与高斯分布相比,其峰值更低但取值范围更广。文章通过几何解释和性质分析,揭示了柯西分布的独特之处,并指出在量子物理学中,由于电子位置分布的广泛性,柯西分布比高斯分布更为适用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、提要

二、柯西分布的几何解释

三、性质

四、结论


一、提要

        连续概率密度函数究竟有多少,应该有无穷多。在诸多分布函数中,高斯分布可能是最著名的。然而,有没有类似于高斯函数的分布,而形式上不是指数函数的呢?回答是有,柯西分布就是一种。

二、柯西分布的几何解释

        柯西分布,也称为柯西-洛伦兹分布或洛伦兹分布,是描述共振行为的连续分布。它还描述了以随机角度倾斜的线段切割 x 轴的水平距离分布。如图:我们从原点引出射线,相邻射线角度相等,这些射线与平行于x轴的直线S有交点,这些交点在S线上的密度是不同的,显然,在90°的附近密度最大。(目测)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值