使用 Python库DEAP的多目标优化示例

一、说明

   在优化领域,困难往往不是来自为单个问题找到最佳解决方案,而是来自管理具有多个经常相互冲突的目标的复杂问题环境。这就是多目标优化 (MOO) 发挥作用的地方,它提供了一个解决此类多方面问题的框架。本文探讨了 MOO 的核心及其数学基础,并提供了一个动手 Python 示例来说明这些概念。

二、了解多目标优化

   多目标优化是数学建模和计算智能中的一个重要领域,专注于涉及多个目标函数同时优化的问题。这些目标通常是相互冲突的,这意味着改进一个目标可能会使另一个目标恶化。MOO 的目标不是找到单一的最优解决方案,而是确定一组最佳解决方案,同时考虑相互竞争的目标之间的权衡。

核心理念:

   目标:优化过程寻求实现的不同目标。在 MOO 中,总是有两个或多个目标。
帕累托最优性:如果一个目标不能在不恶化至少一个其他目标的情况下得到改进,则解决方案是帕累托最优的。这些解决方案的集合形成了帕累托阵线。
   权衡:必须在目标之间做出妥协,因为改进一个目标通常是以牺牲另一个目标为代价的。

三、多目标优化中的数学建模

3.1 多目标优化任务定义

   多目标优化问题可以用数学公式表述如下:
给出一组函数: f 1 ( x ) , f 2 ( x ) , f 3 ( x ) . . . f k ( x ) f_1(x),f_2(x),f_3(x)...f_k(x) f1(x),f2(x),f3(x)...fk(x)
服从条件: x ∈ X x \in X xX
f 1 , f 2 , f 3 . . . f k f_1 ,f_2 ,f_3 ...f_k f1,f2,f3...fk是目标函数,在优化中取最大或最小。
X:表示合理化集合,盛放x的所有可能取值。
此时用python的DEAP库进行实现。首先给出一个例子:
example 1:最小化的目标函数 f 1 ( x ) = x 2 f_1(x)=x^2 f1(x)=x2,最小化目标函数: f 1 ( x ) = ( x − 2 ) 2 f_1(x)=(x-2)^2 f1(x)=x22

3.2 环境设定

   安装deap命令

pip install deap

3.3 精心设计解决方案

   让我们看一下代码,分解每个步骤,以了解如何使用 DEAP 实现 MOO。

第 1 步:定义问题

   首先,我们需要根据 DEAP 的框架来定义我们的问题,明确我们目标的性质和我们个人的结构(解决方案)。

from deap import base, creator, tools, algorithms
import random


# Problem definition
creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0))  # Minimize both objectives
creator.create("Individual", list, fitness=creator.FitnessMin)  # Define individual structure

步骤 2:初始化工具箱

   DEAP中的工具箱是我们注册遗传操作的方法的地方,例如突变,交叉和选择,以及我们针对特定问题的配置。

toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, -10, 10)  # Decision variable range
toolbox.register("individual", tools.initRepeat, creator.Individual,
                 toolbox.attr_float, n=1)  # Individual creation
toolbox.register("population", tools.initRepeat, list, toolbox.individual)  # Population creation

步骤 3:定义评估函数

   我们的评估功能计算给定解决方案的目标。这个功能至关重要,因为它指导着进化过程。

def evaluate(individual):
    x = individual[0]
    return x**2, (x-2)**2  # The two objectives
toolbox.register("evaluate", evaluate)

第 4 步:遗传算子

   我们定义了交配(交叉)、突变和选择的遗传算子。这些算子使解决方案能够向帕累托前沿演进。

toolbox.register("mate", tools.cxBlend, alpha=0.5)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("select", tools.selNSGA2)  # NSGA-II selection algorithm

第 5 步:进化算法

最后,我们实现了主要的进化循环,将我们的人口进化到帕累托前沿。

def main():
    random.seed(1)
    population = toolbox.population(n=100)  # Initial population
    NGEN = 50  # Number of generations

    # Evolutionary loop
    for gen in range(NGEN):
        offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.2)
        fits = toolbox.map(toolbox.evaluate, offspring)
        for fit, ind in zip(fits, offspring):
            ind.fitness.values = fit
        population = toolbox.select(offspring, k=len(population))

    return population

if __name__ == "__main__":
    pop = main()
    front = tools.emo.sortNondominated(pop, len(pop), first_front_only=True)[0]

    # Display the Pareto front
    print("Pareto Front:")
    for ind in front:
        print(ind.fitness.values)

四、结论

   此 Python 示例演示了 DEAP 在通过进化算法解决多目标优化问题方面的强大功能。通过开发几代人的解决方案,我们可以近似于帕累托前沿,为决策者提供一系列相互竞争的目标之间的最佳权衡。

   多目标优化是一个广阔而活跃的领域,其应用范围从工程设计到金融投资组合管理。这里讨论的原理和技术提供了一个基础,但对MOO的探索是广泛而有益的,还有更多的东西可以检查和应用于现实世界的问题。

好的,下面是一个使用deap编写的NSGA-II算法求解双目标优化问题的示例代码: ```python import random from deap import base, creator, tools # 定义问题 creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -1.0)) creator.create("Individual", list, fitness=creator.FitnessMulti) # 定义遗传算法的参数 toolbox = base.Toolbox() toolbox.register("attr_float", random.uniform, 0, 1) toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=2) toolbox.register("population", tools.initRepeat, list, toolbox.individual) toolbox.register("evaluate", evaluate) # 定义评估函数 toolbox.register("mate", tools.cxSimulatedBinaryBounded, low=0, up=1, eta=20.0) toolbox.register("mutate", tools.mutPolynomialBounded, low=0, up=1, eta=20.0, indpb=1.0 / 2) toolbox.register("select", tools.selNSGA2) # 定义主函数 def main(): pop = toolbox.population(n=50) # 初始化种群 pop = algorithms.eaMuPlusLambda(pop, toolbox, mu=len(pop), lambda_=len(pop), cxpb=0.9, mutpb=0.1, ngen=100) # 打印最终的Pareto前沿 pareto_front = tools.sortNondominated(pop, k=len(pop), first_front_only=True)[0] for ind in pareto_front: print(ind.fitness.values) ``` 上面的代码中,我们首先定义了一个双目标优化问题,包括两个目标函数,并将其作为适应度函数。然后,我们注册了所需的遗传算法操作,包括个体的初始化、种群的初始化、评估函数、交叉和变异操作、选择操作等。最后,在主函数中,我们使用`eaMuPlusLambda`函数来运行NSGA-II算法,并打印出最终的Pareto前沿。 当然,这里的关键是如何实现评估函数,这要根据具体的问题来进行实现。在评估函数中,需要计算每个个体的目标函数值,并将其设置为个体的适应度值。在这个示例中,我们没有给出具体的评估函数实现,需要根据实际问题进行编写。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值