语言模型的校准技术:增强概率评估

使用 DALLE-3 模型生成的图像

目录

一、说明

二、为什么校准对 LLM 模型至关重要

三、校准 LLM 概率的挑战

四、LLM 的高级校准方法

4.1 语言置信度

4.2 增强语言自信的先进技术

4.3 基于自一致性的置信度

4.4 基于 Logit 的方法

五、代理模型或微调方法

5.1 使用代理模型进行置信度评估

5.2 识别不确定性:R-tuning

5.3 LITCAB:小改变,大影响

5.4 ASPIRE:更智能的模型响应

六、结论


一、说明

        语言模型,尤其是大型语言模型 (LLM),凭借其理解和生成类人语言的能力,彻底改变了人工智能领域。这些模型不仅能够在零样本设置下或通过定制提示执行各种任务,而且它们的灵活性和多样性也使它们在多个领域中非常有用。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值