均值与标准差、标准误的关系

一、说明

本文介绍基本的统计学概念,标准差和标准误,此两个概念都与均值期望有一定联系,但它们之间本质上是不同的。

二、均值与标准差的标准误差:概述

标准差 (SD) 衡量从单个数据值到平均值的变异量或离散量。SD 是许多应用中经常引用的统计数据,从数学和统计学到金融和投资。

均值标准误 (SEM) 衡量数据的样本均值 (average) 可能与真实总体均值相差多远。SEM 总是比 SD 小。

关键要点
标准差 (SD) 衡量数据集相对于其平均值的离差。
SD 经常用于统计,而在金融中则经常用作投资波动性或风险的代表。
均值标准误 (SEM) 衡量样本均值与总体均值相比可能存在多少差异。
SEM 获取 SD 并将其除以样品量的平方根。
SEM 将始终小于 SD。

标准差和标准误差都用于统计研究,包括金融、医学、生物学、工程学和心理学的研究。在这些研究中,SD 和估计的 SEM 用于呈现样本数据的特征并解释统计分析结果。

三、SD和SEM的

然而,即使是一些研究人员偶尔也会混淆 SD 和 SEM。这些研究人员应该记住,SD 和 SEM 的计算包括不同的统计推论,每个推论都有自己的含义。SD 是单个数据值的离散度。换句话说,SD 表示均值表示样本数据的准确性。

但是,SEM 的含义包括基于抽样分布的统计推断。SEM 是样本均值 (样本分布) 的理论分布的 SD。
1
唐纳德· G·阿尔特曼和J·马丁·布兰德。“标准差和标准误差。”英国医学杂志。第 331 卷。2005 年,第 903 页。

四、如何计算SD和SEM的方法

4.1 标准差的计算方法有以下公式:

在这里插入图片描述

4.2 标准差计算法

SD 的公式需要几个步骤:

1 首先,取每个数据点与样本平均值之差的平方,找到这些值的总和。
2 接下来,将该总和除以样本量减 1,即为方差。
3 最后,取方差的平方根得到 SD。

4.3 均值的标准误-SEM

SEM 的计算方法很简单,只需将标准差除以样本量的平方根即可。

标准误通过测量样本均值的样本间变异性来给出样本均值的准确度。SEM 描述样本均值的精确程度,作为总体真实均值的估计值。

随着样品数据的大小变大,SEM 相对于 SD 减小。随着样本数量的增加,样本均值会更精确地估计总体的真实均值。

增加样本量并不一定使 SD 变大或变小;它只是对总体 SD 的更准确估计。

注意:抽样分布是从较大总体中获取的样本统计量的概率分布。研究人员通常使用样本数据来估计总体数据,而抽样分布解释了样本均值如何随样本而变化。均值的标准误差是均值的抽样分布的标准差。

五、金融中的标准误差和标准差

在金融领域,资产的 SEM 每日回报率衡量样本平均值的准确性,作为对资产长期(持续)平均每日回报率的估计。

另一方面,回报的 SD 衡量单个回报与平均值的偏差。因此,SD 是波动性的衡量标准,可以用作投资的风险衡量标准。

日常价格波动较大的资产比日常波动较小的资产具有更高的 SD。假设呈正态分布,大约 68% 的每日价格变化在平均值的 1 个 SD 范围内,大约 95% 的每日价格变化在平均值的 2 个 SD 范围内。

六、均值的标准差和标准误差的异同

标准差衡量从特定数据点到平均值的可变性。均值的标准误度量样本均值对它所要估计的总体均值的精确度。它通常表示为数字,但也可以显示为百分比,称为相对标准误差。

6.1 标准误差 (SE) 是否等于标准差 (SD)?

不会,标准差 (SD) 始终大于标准误差 (SE)。这是因为标准误差将标准差除以样本量的平方根。

如果样本数量为 1,则它们将相同,但样本数量为 1 很少有用。

6.2 如何从 SD 计算 SE?

如果您有标准误差 (SE) 并希望根据它计算标准差 (SD),只需将其乘以样本量的平方根即可。

6.3 为什么我们使用标准误差而不是标准偏差?

算法交易者在使用统计分析评估置信区间或统计显着性时,会更常使用标准误差。

6.4 什么是经验法则,它与标准差有什么关系?

正态分布也称为标准钟形曲线,因为它在图形形式中看起来像一个钟形。根据经验法则或 68–95–99.7 法则,在正态分布下观察到的所有数据中有 68% 将落在平均值的一个标准差内。同样,95% 落在 2 个标准差内,99.7% 落在 3 个标准差内。
2

七、底线

投资者和金融分析师衡量标准差是估计股票或其他投资潜在波动性的一种方式。它有助于确定投资者所涉及的风险水平。在阅读分析师报告时,投资的风险水平可能被标记为“标准差”。

均值的标准误差表示数字的可能准确性。样本量越大,数字应该越准确。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值