协同控制笔记1——基础介绍及部分定义定理

一.基础介绍

协同控制主要涉及三个部分:
智能体动力学、智能体间相互作用、协同控制规律

相互作用:智能体通常动力学上彼此解耦。之间的信息交换通常以图的形式表示,可以是静态的(边非时变)或者动态的(边是时变的)。

二.相关定义

符号含义
R^(n×n)实数矩阵
C^(n×n)复数矩阵
R+正实数集合
上标H复矩阵的共轭转置
1所有元素为1的列向量
Re(s) Im(s)S的实部、虚部
diag(A1, …,An)对角矩阵
det(A)A的行列式
λmin(A) λmax(A)A特征值的最小、最大值
Range(A)A的列空间
X>(>=)Y,X,Y实对称X-Y 是正(半)定的
Adjacency matrix - 邻接矩阵

<x,y>:有向边 任意两顶点间的边均是有向边,则为有向图

邻接:表示顶点间的关系。若图含(x,y),则顶点x与顶点y邻接。

邻接矩阵:表示有向图的一种存储方法

用两个数组:一维数组存储顶点信息,二维数组存储弧/线的信息。

图有n个顶点,则邻接矩阵是n*n的方阵,

无向图(undigraph)的邻接矩阵:两个顶点有边为1,否则为0,主对角线为0,且矩阵对称

有向图(digraph)的邻接矩阵:两个顶点有边为1,否则为0,主对角线为0,矩阵不对称

网图(network)的邻接矩阵:表中对应位置写图中弧的权重,主对角线为0,其余部分取INF

Laplacian matrix – 拉普拉斯矩阵

L为拉普拉斯矩阵,L=图的度矩阵-图的邻接矩阵

度矩阵(degree):对角阵,对角上的元素为各个顶点的度。有向图中,顶点vi的度分为顶点vi的出度和入度,即从顶点vi出去的有向边的数量和进入顶点vi的有向边的数量。

在求L时根据情况选择出度矩阵或入度矩阵。

性质:矩阵是正半定的;行和为0,最小特征值为0,对应特征向量为全1列向量;特征值中0出现的次数即图连通区域的个数;最小特征值为0,对应特征向量为全1列向量

L的所有非零特征值都位于以dmax为圆心、半径为dmax的复平面上的一个圆盘内,其中dmax为所有节点的最大入度。
拉普拉斯矩阵L是一个奇异的M-矩阵。

Kronecker product - 克罗内克积(是张量积的特殊形式)

定义:A:mn, B:pq → A⊗B是mp*nq的分块矩阵

符合结合律,不符合交换律,有混合乘积、逆、转置的定理

克罗内克和:A:nn B:mm I:单位阵 → A⊕B=A⊗Im+In⊗B

三.相关定理

矩阵结论条件其他
A∈C^(n×n)连续时间意义上是自然稳定的特征值:没有正实部; 并且虚轴上任意特征值所对应的约当块的大小为1所有特征值都具有严格负实部,则为Hurwitz
A∈C^(n×n)离散时间意义上是自然稳定的特征值:全小于等于1; 任意单位大小的特征值所对应的约当块的大小为1舒尔稳定:所有特征值小于1
A∈R^(n×n)A:埃米尔特矩阵(自共轭)A=A^(H)对称矩阵:实埃米尔特矩阵
A∈R^(n×n)A:酉矩阵AA^(H)= A^(H)A=I正交阵:实酉矩阵
P∈R^(n×n)P是子空间S的正交投影range(P ) = S, P^(2)= P , and P^(T) = P子空间上的正交投影是唯一的
A∈R^(n×n)A:奇异 M-矩阵非对角线元素是非正的; A所有特征值有非负实部
C是真实向量空间Vs⊆R^§中的集合集合C为凸对于C中的任意x和y,对于任意z∈[0,1],点(1−z)x + zy在C中V中X = {x1,··,xn}点集的凸壳是包含X中所有点的极小凸集
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值