机器人学之运动学笔记【2】—— 变换矩阵

1.Transformation Matrix 的解释

前面已经学习描述一个刚体的位姿,在刚体的质心上建立 body frame ,刚体的位置由 body frame 的原点位置描述,刚体的姿态由 body frame 的姿态描述,将位置和姿态整合到一个矩阵中就是这样(Homogeneous transformation matrix):
在这里插入图片描述
那么为什么用这样的矩阵来表达呢?下面就来验证一下这个变换矩阵的正确性:

  • 仅有移动的情况下(已知Pb,求Pa):
    在这里插入图片描述
    在这里插入图片描述
  • 仅有转动的情况下:
    在这里插入图片描述
  • 既有移动,又有转动:
    在这里插入图片描述
    例题:在这里插入图片描述在这里插入图片描述解答:
    在这里插入图片描述

2.Transformation Matrix 的运算

2.1 连续运算

在这里插入图片描述类推:
在这里插入图片描述

2.2 反矩阵

在这里插入图片描述在这里插入图片描述那么了解反矩阵有什么用处呢?
反矩阵一般应用于某个变换矩阵未知的情况下利用已知条件表达出未知量:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值