机器人学之动力学笔记【11】—— 拉格朗日 动力学方程

本文介绍用拉格朗日法(基于能量分析)建立机械臂动力学方程,包括动能、势能及Lagrangian表达式的定义。通过An RP Manipulator举例计算,还将动力学方程从关节空间转换到笛卡尔空间,最后考虑实际中机械臂存在的能量损耗,如阻尼力损耗和库仑摩擦。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器人学之动力学笔记【11】—— 拉格朗日 动力学方程

1. 拉格朗日法

之前我们学习了如何使用牛顿-欧拉法(基于力和力矩分析)建立机械臂的动力学方程,这一节要学习拉格朗日法(基于能量分析)建立机械臂的动力学方程。
在这里插入图片描述
动能
每一个杆件的动能 = 移动动能 + 转动动能
整个系统动能 = 所有杆件动能之和
动能是角度和角速度的函数,写成通用矩阵式
在这里插入图片描述
势能
每个杆件的势能 = 每个杆件的重力势能 + 零势能点
整个系统势能 = 所有杆件势能之和
势能是角度的函数
在这里插入图片描述
定义 Lagrangian 表达式
在这里插入图片描述
定义运动方程表达式:Lagrangian 对 θ(dot) 求偏导后求微分 - Lagrangian 对 θ 求偏导
展开后就是第二个式子

2. 举例:An RP Manipulator

在这里插入图片描述

第一个杆件的速度在这里插入图片描述,则移动动能 = 在这里插入图片描述
在这里插入图片描述
第二个杆的移动动能要注意,一个分量是由在这里插入图片描述造成的,另一个分量是由在这里插入图片描述造成的,所以移动动能是在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
有了动能有了位能之后,直接代入拆解后的各个部分计算
在这里插入图片描述
整理出来
在这里插入图片描述
利用 State-Space representation 拆开理解
在这里插入图片描述

3. 转换到笛卡尔空间下

我们写出来的动力学方程是 joint space 下的方程式,也就是我们知道了每个手臂关节的状态在这里插入图片描述在这里插入图片描述就可以知道达成这个运动状态所需要的关节的扭力是多少。

在笛卡尔空间下面,在看末端点的加速度状态的时候,末端点的加速度和力的关系是什么?那现在就可以使用之前学习过的雅克比矩阵把本来的方程式转换到笛卡尔空间下面的运动方程式

在这里插入图片描述
之前学过,joint torque 和 end effector 的 force 之间存在一个雅克比矩阵
在这里插入图片描述
整理出来得到上式,再拆解开来。

重新回看之前双旋转自由度机械臂的例子,之前是用牛顿-欧拉法去做,并且找到了一下三个矩阵
在这里插入图片描述
我们现在想做的事是把它换到笛卡尔空间下面,在机器人学之运动学笔记【8】—— 微分运动学中我们已经得到了雅克比矩阵 J(θ) ,所以它的逆矩阵和导数如下:
在这里插入图片描述
然后就是代公式,找到这个机械臂在笛卡尔空间下面的表达法:
在这里插入图片描述
像之前一样将科式力和离心力也拆解出来,拆解的更彻底一点
在这里插入图片描述
代入求解:
在这里插入图片描述

4. 考虑能量损耗

在这里插入图片描述
注意:
我们在推导拉格朗日方程的时候认为力做的功都转换为了动能和势能,过程中没有损耗。但是在实际机械臂中,没有摩擦是不可能的。这里引入阻尼力损耗的概念,那另外一个就是库仑摩擦,基本上是一个定值,但是它在静止时和运动时是不一样的,分为静摩擦和动摩擦

六轴机器人的拉格朗日动力学可以通过以下步骤推导得到: 1. 定义广义坐标和广义速度 假设六轴机器人有6个自由度,即6个关节,我们可以定义广义坐标和广义速度为: q = [q1, q2, q3, q4, q5, q6],q' = [q1', q2', q3', q4', q5', q6'] 其中,qi表示第i个关节的角度,qi'表示第i个关节的角速度。 2. 计算机器人的动能和势能 机器人的动能可以表示为: T = 1/2 q' M(q) q' 其中,M(q)是机器人的惯性矩阵,可以通过DH参数和机器人的质量、几何形状等参数计算得到。 机器人的势能可以表示为: U = mgh 其中,m是机器人的质量,g是重力加速度,h是机器人质心的高度。 3. 计算机器人的拉格朗日量 根据拉格朗日动力学原理,机器人的拉格朗日量可以表示为: L = T - U 4. 对广义坐标进行变分 为了得到机器人的运动方程,我们需要对广义坐标进行变分。假设广义坐标发生微小变化,即: δq = [δq1, δq2, δq3, δq4, δq5, δq6] 5. 计算机器人的虚功 机器人在运动过程中所做的虚功可以表示为: δW = ∑(i=1 to 6) τi δqi 其中,τi是机器人的关节扭矩。 6. 写出机器人的运动方程 根据虚功原理,机器人在平衡状态下,虚功为零。因此,我们可以得到机器人的运动方程: ∂L/∂qi - d/dt(∂L/∂qi') = τi 其中,i=1,2,...,6。 这个方程组就是六轴机器人的拉格朗日动力学方程,它可以用于分析和控制六轴机器人的运动状态。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值