从二叉堆到左式堆

设计一种类似二叉堆的堆结构,能高效地支持合并操作(即以 O(N)(最坏) 的时间处理一次 Merge),而仅使用一个数组(经典二叉堆的实现)似乎很难。 原因在于,合并似乎需要把一个数组拷贝到另一个数组中去,对于相同大小的堆这将花费 Θ(N) 。正因如此,所有支持高效合并的高级数据结构都需要使用指针。

1. 左式堆的性质

左式堆不是理想平衡的(perfectly balanced),而实际上是趋于非常不平衡。

定义:Npl(X):Null path length,为从节点 X 到任一个没有两个儿子(左孩子 && 右孩子)的结点的最短路径的长度。因此,会有以下基本性质:

  • 具有 0 个或 1 个儿子的结点的 Npl 为 0
  • Npl(NULL) = -1

左式堆性质是:对于堆中的每一个结点 X,左儿子的 0 路径长度至少与右儿子的 0 路径长度一样大。最终会使得树向左侧增加深度,

还有一点需要注意的是,任一结点的零路径长度比它的诸儿子结点的零路径长度的最小值多1。这个结论也适用于少于两个儿子的结点,比如某树只有根节点和其左孩子(或者右孩子),此时根节点和左孩子的 Npl 均为 0,但据前面的定义可知,此时的右孩子(左孩子)因为为 NULL,所以为 -1,上述结论依然成立。

2. C 实现

// leftheap.h
typedef int ElementType;
struct TreeNode;
typedef struct TreeNode* PriorityQueue;

// 仅实现两个左式堆的 Merge
PriorityQueue Merge (PriorityQueue H1, PriorityQueue H2);

// leftheap.c
struct TreeNode {
    ElementType Element;
    PriorityQueue Left;
    PriorityQueue Right;
    int Npl;
};
  • Merge 函数的实现:

    static PriorityQueue Merge1 (PriorityQueue H1, PriorityQueue H2) {
            if (!H1->Left)
                H1->Left = H2;
            else {
                H1->Right = Merge(H1->Right, H2);
                if (H1->Left->Npl < H1->Right->Npl)
                    SwapChild(H1);         // H1 的左右孩子指针交换
                H1->Npl = H1->Right->Npl + 1;
            }
            return H1;
    }
    
    PriorityQueue Merge (PriorityQueue H1, PriorityQueue H2) {
        if (!H1) return H2;
        if (!H2) return H1;
        if (H1->Element < H2->Element) {
            return Merge1(H1, H2);
        }
    }

单节点的插入可以转换为特殊的 Merge;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值