数学小魔术——猜数字

数学小魔术——神奇的二进制

请你任意猜想一个三位数,把这个三位数乘以 91 的乘积的最后三位告诉我,我们很快猜出你心中所想的那个三位数是多少?

我们以对方心中所想的 789 为例,则对方计算出 789×91=71799 ,并把结果的三位,也即 799 告诉我。看起来,这么做似乎损失了不少信息,让我没法反推出原来的数。不过,我仍然有办法:只需要把对方告诉我的结果再乘以 11,也即 799×11=8789 ,乘积的末三位即是对方刚开始所想的秘密数字。

道理其实很简单, 91×11=1001=(1000+1) ,任何三位数乘以1001,都会将该数复制一遍,比如, 123×1001=123×(1000+1)=123000+123=123123 ,末尾三位保持不变。

当然该问题也可描述为:

请你任意猜想一个三位数,把这个三位数乘以 11 的乘积的最后三位告诉我,我们很快猜出你心中所想的那个三位数是多少?

假设该数为 x ,上述问题即可用数学语言描述为,(x91%1000)11=[(x9111)%1000=x],这有一个基本结论,相乘之前对乘数取余不会对结果造成影响

我们举一反三,我们换种方式描述该问题:我需猜测你心中所想的数字,比如银行卡密码,比如某人的生日,你用我们约定的一个数 a (比如91),去乘那个数,传给我其末尾的几位,这叫什么操作?即为对该数字进行的加密。我用我约定的另外一个数(比如11)去乘以传递过来的数,即为解码的动作。

比如对银行卡密码(一般为6位,比如密码为327685)进行加密,传输以及最后的解码。你我处在计算机网络中的不同节点,你要告诉我你银行卡的密码,显然你不能直接传递明码,考虑到,5000001=141×35461,我们使用 141×327685%106=203585 ,作为加密后数字,我们使用 35461×203585%106=327685

### 关于三位数魔术的原理与实现 #### 魔术背景介绍 三位数的小魔术通常基于简单的数学运算和逻辑推理来完成。这类魔术的核心在于利用特定的算法或规律,使得观众难以察觉其中的秘密。虽然引用的内容并未直接提及此类魔术的具体细节[^1],但可以通过分析常见的三位数魔术模式得出其背后的原理。 #### 原理解析 一种典型的三位数魔术涉及让参与者选择一个任意的三位数 \(ABC\)(即百位为\(A\)、十位为\(B\)、个位为\(C\)),并按照一定的规则对其进行操作。以下是常见的一种实现方式及其背后原理: 1. **选定数字** 让参与者随机选取一个三位数 \(N = 100A + 10B + C\),其中 \(A, B, C\) 是该数的各个位上的数值。 2. **反转数字** 将这个三位数反转得到新的数字 \(M = 100C + 10B + A\)。 3. **求差值** 要求参与者计算原数与反转后的数之间的差值: \[ D = |N - M| \] 4. **再次反转结果** 对上述差值 \(D\) 再次进行反转操作,记作 \(R\)。 5. **最终加法** 最后一步是将差值与其反转的结果相加: \[ S = D + R \] 无论初始选择的是哪个三位数,只要满足条件 \(A \neq C\),那么最后的结果总是固定的常数 \(S = 1089\)。这是由于三位数减法过程中产生的对称性质所决定的。 #### 实现代码示例 下面提供一段 Python 代码演示这一过程: ```python def three_digit_magic(number): # 确保输入是一个有效的三位数 if not (100 <= number <= 999): raise ValueError("请输入一个有效的三位数") original_number = str(number).zfill(3) reversed_number = int(original_number[::-1]) difference = abs(int(original_number) - reversed_number) reversed_difference = int(str(difference).zfill(3)[::-1]) final_result = difference + reversed_difference return final_result # 测试例子 print(three_digit_magic(732)) # 输出应始终为1089 ``` #### 数学证明 为了验证为什么这种现象会发生,考虑一般形式下的三个变量 \(A\), \(B\), 和 \(C\) 表达原始数字以及它们经过变换之后的关系。假设 \(A > C\) (如果 \(A < C\) 则只需交换两者顺序即可)。则有如下推导步骤: - 差异表达式展开为: \[ N-M=(100A+10B+C)-(100C+10B+A)=99(A-C). \] - 当我们将此差异重新翻转再累加回去时,会发现无论如何排列组合都会抵消掉中间项的影响从而形成固定结构。 因此,在任何情况下都可获得相同结论——即最终答案必然是 `1089` [^2]. --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值