Eigen C++

Eigen库中的Matrix和Array类提供了丰富的矩阵和向量操作。Matrix类支持动态和静态大小,使用C++11方式初始化,支持列主存储格式。文章详细介绍了矩阵初始化、索引、操作,包括Resize、Copy、Array转换、分块操作、特殊初始化、Reduction和Partial Reduction。此外,还讨论了Map的使用,如何避免Alias问题以及Eigen的Geometry模块。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Eigen

Matrix

Eigen 中所有的矩阵和向量都是 Matrix 类。Matrix 模板类需要指定三个量:Matrix<typename Scalar, int RowsAtCompileTime, int ColsAtCompileTime>。其中,Scalar 是类型;RowsAtCompileTimeColsAtCompileTime 时所在的行数和列数。后三个参数是 <Options, MaxRowAtCompileTime, MaxColsAtCompileTime>Options 可以选为 RowMajor 变为行主格式。

当矩阵的行或者列为1时即是向量Eigen::Dynamic 是该维度为动态。构造 Matrix 时,可以指动态矩阵的大小。eg.

Eigen::MatrixXf a(10, 15); // 形状为 10, 15 的动态矩阵

所有的矩阵都默认是列主存储格式。在 Eigen 的操作中,列主和行主矩阵可以混合运算,相互赋值,不受影响。但是 Eigen 默认支持列主矩阵,对列主阵的运算会更快,更安全。

矩阵初始化

  • 使用 C++11 方式初始化
// Initialize Vector
Matrix<int, 5, 1> b {
   1, 2, 3, 4, 5};   // A row-vector containing the elements {1, 2, 3, 4, 5}

// Initialize Matrix
Matrix<double, 2, 3> b {
   
      {
   2, 3, 4}, // First Row
      {
   5, 6, 7}, // Second Row
};
  • 矩阵和向量都可以使用逗号初始化。左值可以是矩阵和矩阵块,右值可以是数字,向量,矩阵。
Matrix3f m;
m << 1, 2, 3,
     4, 5, 6,
     7, 8, 9;

Additional Notes

Vector 可以由 Eigen::all 初始化。即

Eigen::Matrix3f m;
m<< 1, 2, 3,
    4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值