Rookie‘s view about the derivative of Rotation Matrix(简明旋转矩阵求导推导)

14 篇文章 4 订阅
6 篇文章 0 订阅

Preface:This article is written for a nifty girl who I cherish.

在这里插入图片描述

(0)Pre-acknowledge

(0.0)Skew-symmetric matrix

a × b = [ a ] × b a×b=[a]^×b a×b=[a]×b

Among which [ a ] × [a]^× [a]×:

[ 0 − a z a y a z 0 − a x − a y a x 0 ] \begin{bmatrix} 0&-a_z&a_y \\a_z & 0&-a_x \\-a_y&a_x&0 \end{bmatrix} \qquad 0azayaz0axayax0

  • Meaning: 用反对称矩阵乘代替了外积,使运算方便
  • Proving:
    We know that:
    ( x 1 , y 1 , z 1 ) × ( x 2 , y 2 , z 2 ) (x_1,y_1,z_1)×(x_2,y_2,z_2) (x1,y1,z1)×(x2,y2,z2)= ( ∣ x 1 y 1 z 1 x 2 y 2 z 2 i j k ∣ ) ( \left|\begin{array}{cccc} x_1 & y_1& z_1 \\ x_2& y_2& z_2\\ i & j & k \end{array}\right| ) (x1x2iy1y2jz1z2k)
    =
    [ y 1 z 2 − y 2 z 1 z 1 x 2 − z 2 x 1 x 1 y 2 − x 2 y 1 ] \begin{bmatrix} y_1z_2-y_2z_1 \\z_1x_2-z_2x_1 \\x_1y_2-x_2y_1 \end{bmatrix} y1z2y2z1z1x2z2x1x1y2x2y1= [ 0 ∗ x 2 − z 1 y 2 + y 1 z 2 z 1 x 2 + 0 ∗ y 2 − x 1 z 2 − y 1 x 2 + x 1 y 2 + 0 ∗ z 2 ] \begin{bmatrix} 0*x_2-z_1y_2+y_1z_2 \\z_1x_2+0*y_2-x_1z_2 \\-y_1x_2+x_1y_2+0*z_2 \end{bmatrix} 0x2z1y2+y1z2z1x2+0y2x1z2y1x2+x1y2+0z2
    =
    [ 0 − z 1 y 1 z 1 0 − x 1 − y 1 x 1 0 ] ∗ [ x 2 y 2 z 2 ] \begin{bmatrix} 0&-z_1&y_1 \\z_1 & 0&-x_1 \\-y_1&x_1&0 \end{bmatrix} * \begin{bmatrix} x_2 \\y_2 \\z_2 \end{bmatrix} \qquad 0z1y1z10x1y1x10x2y2z2

(0.1)The formula of line velocity (Basic Principle)

d r e ⃗ d t = w e ⃗ × r e ⃗ \frac{d\vec{r_e}}{dt}=\vec{w_e}×\vec{r_e} dtdre =we ×re

  • Comment: 在 e e e坐标系下对向量 r e ⃗ \vec{r_e} re 求导,得到的是向量 r e ⃗ \vec{r_e} re 端点的线速度,该公式既是某一向量的线速度等于角速度叉乘该向量,可见角速度方向是右手系中旋转轴的方向,角速度叉乘向量得到的方向又恰好是向量端点的运动方向
  • Example: w e ⃗ = ( − s i n ( t ) , c o s ( t ) , 0 ) T \vec{w_e}=(-sin(t),cos(t),0)^T we =(sin(t),cos(t),0)T

(0.2)The perspective point Multiply

  • jargon: 左乘行变换右乘列变换

  • new perspective:

    [ x 11 x 12 x 13 x 21 x 22 x 23 x 31 x 32 x 33 ] ∗ [ a b c ] = a ∗ [ x 11 x 21 x 31 ] + b ∗ [ x 12 x 22 x 32 ] + c ∗ [ x 13 x 23 x 33 ] \begin{bmatrix} x_{11}&x_{12}&x_{13} \\x_{21}&x_{22}&x_{23} \\x_{31}&x_{32}&x_{33} \end{bmatrix}* \begin{bmatrix} a \\b \\c \end{bmatrix}=a* \begin{bmatrix} x_{11} \\x_{21} \\x_{31} \end{bmatrix}+b* \begin{bmatrix} x_{12} \\x_{22} \\x_{32} \end{bmatrix}+c* \begin{bmatrix} x_{13} \\x_{23} \\x_{33} \end{bmatrix} x11x21x31x12x22x32x13x23x33abc=ax11x21x31+bx12x22x32+cx13x23x33

  • comment: 相当于向量 [ a b c ] \begin{bmatrix} a \\b \\c \end{bmatrix} abc右乘矩阵 [ x 11 x 12 x 13 x 21 x 22 x 23 x 31 x 32 x 33 ] \begin{bmatrix} x_{11}&x_{12}&x_{13} \\x_{21}&x_{22}&x_{23} \\x_{31}&x_{32}&x_{33} \end{bmatrix} x11x21x31x12x22x32x13x23x33,所以看起来是列变换,我们可以把矩阵的三列看作三个基,对于旋转矩阵,由于其正交性质,且叉乘保留原始方向,矩阵的三列可以看作三个正交基,所以上面的矩阵乘以一个向量叫做正交基变换;由于三个基是相互垂直的,在对坐标进行基变换时相互不干扰,所以我们可以把三个基分别拿出来当作三组独立的向量,对接下来的求导可以更方便理解

(0.3)One principle of cross mutiply

( R a ⃗ ) × ( R b ⃗ ) = R ( a ⃗ × b ⃗ ) (R\vec{a})×(R\vec{b})=R(\vec{a}×\vec{b}) (Ra )×(Rb )=R(a ×b )

  • comment:叉乘的性质有叉乘得出向量的大小 ∣ ∣ a × b ∣ ∣ = ∣ ∣ a ∣ ∣ ∗ ∣ ∣ b ∣ ∣ ∗ s i n θ ||a×b||=||a||*||b||*sin\theta a×b=absinθ与方向符合右手坐标系可以证明此性质

(1)Topic

  • notation define:
symboldescribe
e e e大地坐标系
e n ⃗ \vec{e_n} en 大地坐标系的坐标轴( n n n可为 x , y , z x,y,z x,y,z
R b e R_b^e Rbe从坐标系 b b b到坐标系 e e e的旋转变换
b n e b_n^e bne e e e坐标系下观察到 b b b坐标系的 n n n轴方向的单位向量( n n n可为 x , y , z x,y,z x,y,z
w e ⃗ \vec{w_e} we e e e坐标系下观察到绕旋转轴旋转的角速度
w b ⃗ \vec{w_b} wb b b b坐标系下观察到绕旋转轴旋转的角速度
  • start:
    d R b e d t = d [ b x e    b y e    b z e ] d t = [ w e ⃗ × b x e    w e ⃗ × b y e    w e ⃗ × b z e ] \frac{dR_b^e}{dt}=\frac{d[b_x^e \space\space b_y^e \space\space b_z^e]}{dt}= [\vec{w_e}×b_x^e \space\space \vec{w_e}×b_y^e \space\space \vec{w_e}×b_z^e] dtdRbe=dtd[bxe  bye  bze]=[we ×bxe  we ×bye  we ×bze]
    =
    [ R b e w b ⃗ × b x e    R b e w b ⃗ × b y e    R b e w b ⃗ × b z e ] [R_b^e\vec{w_b}×b_x^e \space\space R_b^e\vec{w_b}×b_y^e \space\space R_b^e\vec{w_b}×b_z^e] [Rbewb ×bxe  Rbewb ×bye  Rbewb ×bze]
    =
    [ R b e w b ⃗ × ( R b e e x ⃗ )    R b e w b ⃗ × ( R b e e y ⃗ )    R b e w b ⃗ × ( R b e e z ⃗ ) ] [R_b^e\vec{w_b}×(R_b^e\vec{e_x}) \space\space R_b^e\vec{w_b}×(R_b^e\vec{e_y}) \space\space R_b^e\vec{w_b}×(R_b^e\vec{e_z}) ] [Rbewb ×(Rbeex )  Rbewb ×(Rbeey )  Rbewb ×(Rbeez )]
    =
    R b e [ w b ⃗ × e x ⃗    w b ⃗ × e y ⃗    w b ⃗ × e z ⃗ ] R_b^e[\vec{w_b}×\vec{e_x} \space \space \vec{w_b}×\vec{e_y} \space \space \vec{w_b}×\vec{e_z} ] Rbe[wb ×ex   wb ×ey   wb ×ez ]
    =
    R b e [ w b ⃗ ] × e R_b^e[\vec{w_b}]^×e Rbe[wb ]×e
    =
    R b e [ w b ⃗ ] × R_b^e[\vec{w_b}]^× Rbe[wb ]×
    get the answer:
    R b e [ w b ⃗ ] × R_b^e[\vec{w_b}]^× Rbe[wb ]×
  • perspective: 本问题求解了在大地坐标系中观察某个坐标系旋转的角速度,而在某个坐标系中观察大地坐标系的结果是 R b e − 1 [ w e ⃗ ] × R_b^{e-1}[\vec{w_e}]^× Rbe1[we ]×

(2)Reference

https://blog.csdn.net/weixin_44382195/article/details/110677858

https://blog.csdn.net/weixin_38632538/article/details/106085426

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值