rank(A)+rank(NULL)=n

UTF8gbsn

null space

什么叫矩阵的NULL space?

A x = 0 Ax=0 Ax=0, 那么 x ∈ x\in x NULL space of row vectors of A.
我们把它明明为null.那么接下来我们看看一些结论.

r a n k ( A ) + r a n k ( n u l l ) = n rank(A)+rank(null)= n rank(A)+rank(null)=n

其中n是A的行向量的含有的元素个数.

null空间证明

我们在这里要来证明null是一个空间.

  • 0 ∈ n u l l 0 \in null 0null.

  • 如果 α ∈ n u l l \alpha\in null αnull,那么 a α ∈ n u l l a\alpha \in null aαnull

  • 如果 α , β ∈ n u l l \alpha,\beta \in null α,βnull,那么 a + β ∈ n u l l a+\beta\in null a+βnull

由此可见null是一个向量空间.

注意: A的所有行向量张成一个向量空间.

证明

  1. 设A的行向量空间的维度为k,而设它的一组极大线性无关组为
    η 1 , η 2 , ⋯   , η k \eta_1,\eta_2,\cdots,\eta_k η1,η2,,ηk

  2. 我们扩展这组极大线性无关组.是它的维度为n,也就是A的行向量的元素个数.
    η 1 , η 2 , ⋯   , η k , η k + 1 , ⋯   , η n \eta_1,\eta_2,\cdots,\eta_k,\eta_{k+1},\cdots, \eta_n η1,η2,,ηk,ηk+1,,ηn

  3. 我们现在可以改写A的形式了 A = ( α 11 η 1 + α 12 η 2 + ⋯ + α 1 k η k α 21 η 1 + α 22 η 2 + ⋯ + α 2 k η k ⋮ α m 1 η 1 + α m 2 η 2 + ⋯ α m k η k ) A=\left( \begin{array}{c} \alpha_{11}\eta_1+\alpha_{12}\eta_2+\cdots+\alpha_{1k}\eta_k \\ \alpha_{21}\eta_1+\alpha_{22}\eta_2+\cdots+\alpha_{2k}\eta_k \\ \vdots\\ \alpha_{m1}\eta_1+\alpha_{m2}\eta_2+\cdots\alpha_{mk}\eta_k \end{array} \right) A=α11η1+α12η2++α1kηkα21η1+α22η2++α2kηkαm1η1+αm2η2+αmkηk

  4. 由此可见,只要 c ∈ ( η 1 , η 2 , ⋯   , η k ) c\in \left( \eta_1, \eta_2, \cdots, \eta_k \right) c(η1,η2,,ηk)张成的空间,那么 A c ≠ 0 Ac \neq 0 Ac=0.

  5. 另外只要, b ∈ ( η k + 1 , η k 2 , ⋯   , η n ) b\in \left( \eta_{k+1}, \eta_{k_2}, \cdots, \eta_n \right) b(ηk+1,ηk2,,ηn)张成的空间,那么 A b = 0 Ab = 0 Ab=0

  6. 现在要来证明 n u l l null null ( η k + 1 , η k + 2 , ⋯   , η n ) \left( \eta_{k+1}, \eta_{k+2}, \cdots, \eta_n \right) (ηk+1,ηk+2,,ηn)相等.

    • 你可以很容易的证明
      ( η k + 1 , η k + 2 , ⋯   , η n ) ⊆ n u l l \left( \eta_{k+1}, \eta_{k+2}, \cdots, \eta_n \right) \subseteq null (ηk+1,ηk+2,,ηn)null

    • 由于 ( η 1 , η 2 , ⋯   , η n ) \left( \eta_1, \eta_2, \cdots, \eta_n \right) (η1,η2,,ηn)张成真个n维空间.我们来看看 γ ∉ ( η k + 1 , η k + 2 , ⋯   , η n ) \gamma \notin \left( \eta_{k+1}, \eta_{k+2}, \cdots, \eta_n \right) γ/(ηk+1,ηk+2,,ηn).

      1. 我们先来看看, γ \gamma γ位于哪里?我们第一感觉是,第一种可能 γ ∈ ( η 1 , η 2 , ⋯   , η k ) \gamma\in \left( \eta_1, \eta_2, \cdots, \eta_k \right) γ(η1,η2,,ηk).属于这个空间的 γ ⇒ A γ ≠ 0 \gamma \Rightarrow A\gamma\neq 0 γAγ=0

      2. γ \gamma γ还可能属于哪个空间?首先要注意.
        ( η 1 , η 2 , ⋯   , η k ) \left( \eta_1, \eta_2, \cdots, \eta_k \right) (η1,η2,,ηk) 加上
        ( η k + 1 , η k + 2 , ⋯   , η n ) \left( \eta_{k+1}, \eta_{k+2}, \cdots, \eta_n \right) (ηk+1,ηk+2,,ηn)
        不等于整个n维空间.其中有一部分向量是需要各自用到这两个空间中的向量才能表示.在这里面的向量至少可以找到不等于0的 σ , λ \sigma,\lambda σ,λ
        使得
        γ = σ η i + λ η j + η d 1 + η d 2 + ⋯ + η d s \gamma = \sigma \eta_i + \lambda \eta_j + \eta_{d_1}+\eta_{d_2}+\cdots+\eta_{d_s} γ=σηi+ληj+ηd1+ηd2++ηds
        但是,这里面的 γ \gamma γ使得 A γ ≠ 0 A\gamma\ne 0 Aγ=0,这个区域并不构成一个向量空间.但是里面确实含有不少向量是不属于null也不属于A的行向量空间的.

      3. 由此可见只要 A γ = 0 ⇒ γ ∈ ( η k + 1 , η k + 2 , ⋯   , η n ) A\gamma=0 \Rightarrow \gamma\in \left( \eta_{k+1}, \eta_{k+2}, \cdots, \eta_n \right) Aγ=0γ(ηk+1,ηk+2,,ηn)

    由此可见 n u l l ∈ ( η k + 1 , η k + 2 , ⋯   , η n ) null \in \left( \eta_{k+1}, \eta_{k+2}, \cdots, \eta_n \right) null(ηk+1,ηk+2,,ηn)

  7. 最终可以得出结论.

    r a n k ( A ) + r a n k ( n u l l ) = n rank(A)+rank(null)= n rank(A)+rank(null)=n

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值