概率论与数理统计教程(一)-随机事件与概率03:概率的性质

§ 1.3概率的性质
利用概率的公理化定义
(非负性、正则性和可列可加性),可以导出概率的一系列性质.
以下我们逐个给出概率的一些常用性质.
首先,在概率的正则性中说明了必然事件 Ω \Omega Ω 的概率为 1 .
那么可想而知,不可能事
∅ \varnothing 的概率应该为 0,下面性质正说明了这一点.
性质 1.3.1 P ( ∅ ) = 0 P(\varnothing)=0 P()=0.
证明由于任何事件与不可能事件之并仍是此事件本身,所以
Ω = Ω ∪ ∅ ∪ ∅ ⋯ ∪ ∅ ∪ ⋯   . \Omega=\Omega \cup \varnothing \cup \varnothing \cdots \cup \varnothing \cup \cdots . Ω=Ω.
因为不可能事件与任何事件是互不相容的,故由可列可加性公理得
P ( Ω ) = P ( Ω ) + P ( ∅ ) + ⋯ + P ( ∅ ) + ⋯   , P(\Omega)=P(\Omega)+P(\varnothing)+\cdots+P(\varnothing)+\cdots, P(Ω)=P(Ω)+P()++P()+,
从而由 P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1
P ( ∅ ) + P ( ∅ ) + ⋯ = 0 , P(\varnothing)+P(\varnothing)+\cdots=0, P()+P()+=0,
再由非负性公理,必有
P ( ∅ ) = 0. P(\varnothing)=0 . P()=0.
结论得证.
1.3.1概率的可加性
概率的可列可加性说明了对可列个互不相容的事件 A 1 , A 2 , ⋯ A_{1}, A_{2}, \cdots A1,A2,,
其可列并的概率可以分别求之再相加,那么对有限个互不相容的事件
A 1 , A 2 , ⋯   , A n A_{1}, A_{2}, \cdots, A_{n} A1,A2,,An,其有限并的概率是否也可以分别求之再相加呢?下面性质回答了这个问题.
性质 1.3.2 (有限可加性) 若有限个事件 A 1 , A 2 , ⋯   , A n A_{1}, A_{2}, \cdots, A_{n} A1,A2,,An
互不相容,则有
P ( ⋃ i = 1 n A i ) = ∑ i = 1 n P ( A i ) . P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right) . P(i=1nAi)=i=1nP(Ai).
证明对
A 1 , A 2 , ⋯   , A n , ∅ , ∅ , ⋯ A_{1}, A_{2}, \cdots, A_{n}, \varnothing, \varnothing, \cdots A1,A2,,An,,,应用可列可加性,得
P ( A 1 ∪ A 2 ∪ ⋯ ∪ A n ) = P ( A 1 ∪ A 2 ∪ ⋯ ∪ A n ∪ ∅ ∪ ∅ ∪ ⋯   ) = P ( A 1 ) + P ( A 2 ) + ⋯ + P ( A n ) + P ( ∅ ) + P ( ∅ ) + ⋯ = P ( A 1 ) + P ( A 2 ) + ⋯ + P ( A n ) . \begin{aligned} P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right) & =P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n} \cup \varnothing \cup \varnothing \cup \cdots\right) \\ & =P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{n}\right)+P(\varnothing)+P(\varnothing)+\cdots \\ & =P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{n}\right) . \end{aligned} P(A1A2An)=P(A1A2An)=P(A1)+P(A2)++P(An)+P()+P()+=P(A1)+P(A2)++P(An).
结论得证.
由有限可加性,我们就可以得到以下求对立事件概率的公式.
性质 1.3.3 对任一事件 A A A,有
P ( A ˉ ) = 1 − P ( A ) . P(\bar{A})=1-P(A) . P(Aˉ)=1P(A).
证明 因为 A A A A ˉ \bar{A} Aˉ互不相容, 且 Ω = A ∪ A ˉ \Omega=A \cup \bar{A} Ω=AAˉ.
所以由概率的正则性和有限可加性得1 = P ( A ) + P ( A ˉ ) =P(A)+P(\bar{A}) =P(A)+P(Aˉ).
由此得 P ( A ˉ ) = 1 − P ( A ) P(\bar{A})=1-P(A) P(Aˉ)=1P(A).
有些事件直接考虑较为复杂,而考虑其对立事件则相对比较简单.
对此类问题就可以利用性质 1.3 .3 ,见下面例子.
例 1.3.1 36 只大小、形状相同的灯泡中 4 只是 6   W 6 \mathrm{~W} 6 W, 其余都是
4   W 4 \mathrm{~W} 4 W 的. 现从中任取 3只,求至少取到一只 6   W 6 \mathrm{~W} 6 W
灯泡的概率.
解 记事件 A A A为 “取出的 3 只中至少有一只 6   W 6 \mathrm{~W} 6 W”, 则 A A A
包括三种情况:取到一只 6   W 6 \mathrm{~W} 6 W 两只 4   W 4 \mathrm{~W} 4 W,
或取到两只 6   W 6 \mathrm{~W} 6 W 一只 4   W 4 \mathrm{~W} 4 W, 或取到三只
6   W 6 \mathrm{~W} 6 W.而 A A A 的对立事件 A ˉ \bar{A} Aˉ 只包括一种情况, 即 “取出的 3
只全部是 4   W 4 \mathrm{~W} 4 W”, 由例 1.2 .3抽样模型可知
P ( A ˉ ) = ( 32 3 ) ( 36 3 ) = 248 357 = 0.695. P(\bar{A})=\frac{\left(\begin{array}{c} 32 \\ 3 \end{array}\right)}{\left(\begin{array}{c} 36 \\ 3 \end{array}\right)}=\frac{248}{357}=0.695 . P(Aˉ)=(363)(323)=357248=0.695.
所以
P ( A ) = 1 − P ( A ˉ ) = 109 357 = 0.305. P(A)=1-P(\bar{A})=\frac{109}{357}=0.305 . P(A)=1P(Aˉ)=357109=0.305.
例1.3.2 抛一枚硬币 5 次, 求既出现正面又出现反面的概率.
解 记事件 A A A为 “抛 5 次硬币中既出现正面又出现反面”, 则 A A A
的情况较复杂,因为出现正面的次数可以是 1 次至 4 次,而 A A A 的对立事件
A ˉ \bar{A} Aˉ则相对简单: 5 次全部是正面 (记为 B B B ), 或 5 次全部是反面 (记为
C C C), 即 A ˉ = B ∪ C \bar{A}=B \cup C Aˉ=BC, 其中 B B B C C C
互不相容,所以由对立事件公式和概率的有限可加性得
P ( A ) = 1 − P ( A ˉ ) = 1 − P ( B ∪ C ) = 1 − P ( B ) − P ( C ) = 1 − 1 2 5 − 1 2 5 = 15 16 . \begin{aligned} P(A) & =1-P(\bar{A})=1-P(B \cup C)=1-P(B)-P(C ) \\ & =1-\frac{1}{2^{5}}-\frac{1}{2^{5}}=\frac{15}{16} . \end{aligned} P(A)=1P(Aˉ)=1P(BC)=1P(B)P(C)=1251251=1615.
1.3.2概率的单调性
可以想象: 当 B B B A A A 包含时 (即 B B B发生必然导致 A A A 发生), 说明事件
A A A 比事件 B B B 更容易发生, 那么 A A A 的概率应该比 B B B 的概率大,
这可由以下性质 1.3 .4的推论说明.
性质 1.3.4 给出了两个有包含关系事件差的概率公式,而性质 1.3 .5
给出了任意两个事件差的概率公式.
性质 1.3.4 若 A ⊃ B A \supset B AB, 则
P ( A − B ) = P ( A ) − P ( B ) . P(A-B)=P(A)-P(B) . P(AB)=P(A)P(B).
证明 因为 A ⊃ B A \supset B AB, 所以
A = B ∪ ( A − B ) , A=B \cup(A-B), A=B(AB),
B B B A − B A-B AB互不相容,由有限可加性得
P ( A ) = P ( B ) + P ( A − B ) , P(A)=P(B)+P(A-B), P(A)=P(B)+P(AB),
即得
P ( A − B ) = P ( A ) − P ( B ) . P(A-B)=P(A)-P(B) . P(AB)=P(A)P(B).
结论得证.
推论(单调性) 若 A ⊃ B A \supset B AB, 则 P ( A ) ⩾ P ( B ) P(A) \geqslant P(B) P(A)P(B).
很容易举例说明: 以上推论的逆命题不成立, 即由 P ( A ) ⩾ P ( B ) P(A) \geqslant P(B) P(A)P(B)
无法推出 A ⊃ B A \supset B AB.
性质 1.3.5对任意两个事件 A , B A, B A,B, 有
P ( A − B ) = P ( A ) − P ( A B ) . P(A-B)=P(A)-P(A B) . P(AB)=P(A)P(AB).
证明 因为 A − B = A − A B A-B=A-A B AB=AAB, 且 A B ⊂ A A B \subset A ABA, 所以由性质 1.3.4得
P ( A − B ) = P ( A − A B ) = P ( A ) − P ( A B ) . P(A-B)=P(A-A B)=P(A)-P(A B) . P(AB)=P(AAB)=P(A)P(AB).
结论得证.
利用性质1.3.4,我们可以求一些较为复杂的事件的概率.
例 1.3.3 口袋中有编号为 1 , 2 , ⋯   , n 1,2, \cdots, n 1,2,,n

  • 13
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值