SpaTopic基于单细胞和空间转录组的肿瘤微环境空间域识别方法

前言

在肿瘤微环境中,肿瘤细胞、免疫细胞和基质细胞之间的相互作用及其空间重组对肿瘤生长、侵袭和转移有直接影响。然而,肿瘤微环境是一个复杂的系统,不同细胞群体在肿瘤的不同阶段和条件下展现出多样化的分布和组成。因此,识别具备特定细胞分布和组成的“空间域”对理解肿瘤微环境的功能至关重要,这些空间域可能是细胞信号传递与相互作用的关键“热点”。

今天分享的这篇文章是南京大学生命科学学院陈迪俊团队于2024年9月27日发表在Science Advances期刊上,题为SpaTopic: A statistical learning framework for exploring tumor spatial architecture from spatially resolved transcriptomic data的文章。在本文中,作者提出了一种新颖的统计学习框架,即SpaTopic,基于主题建模(topic modeling)方法,将空间转录组数据的聚类和反卷积分析有机结合,能够将肿瘤微环境划分为具有一致细胞组成的空间域,从而实现对其精细的功能注释。

文章概述

现有的空间聚类方法通常基于基因表达模式或邻近关系进行聚类,但往往忽视了细胞类型间的功能关联,难以揭示功能相关的细胞间相互作用;而去卷积方法虽然能推测出区域中的细胞类型组成,却未充分考虑细胞在空间上连续分布的特征,难以准确反映细胞间复杂的相互作用网络。这些传统方法缺乏将特定区域内的细胞类型组成与功能相结合进行分析的能力,导致对肿瘤微环境中关键生物过程涉及的细胞群体识别不够全面。

而本文提出的SpaTopic能够精准识别多种与肿瘤功能相关的空间域,包括三级淋巴结构和肿瘤边界等。更为重要的是,SpaTopic 推断出的空间域标记基因稳定性强,具有良好的迁移能力,能够用于预测新数据集中的空间域。此外,SpaTopic 还支持跨数据集的空间域定量比较和功能分析,具有较好的适用性。

文章内容

SpaTopic分析框架

目的:基于空间转录组学数据的基因表达信息和细胞之间有逻辑和有序的排列方式进行空间聚类(Cell Topic)

输入数据:单细胞转录组(SCT)和空间转录组(SRT)

  1. 细胞类型去卷积:首先,使用去卷积方法推测每个空间点(spot)的细胞类型组成,获得每个点的细胞类型分布。

  2. 无监督聚类:接下来,对这些空间点进行初步聚类,将具有相似细胞组成的点分组,形成初始的空间域。

  3. 特异性评分计算:通过Kolmogorov-Smirnov(KS)检验计算每个分组的细胞类型特异性得分,得到矩阵S,确定不同分组中显著的细胞类型。

  4. 主题建模分解:然后使用主题建模(LDA——潜在狄利克雷分配模型)对细胞类型特异性矩阵S进行分解,得到C1 “topic-cell type”和C2 “cell type-topic”两个概率分布矩阵,描述细胞类型和主题之间的关系。

  5. 二值化与空间域定义:最终,将多个具有显著贡献的topic融合在一起,分配到特定的主题(CellTopics),来描述这个空间区域的细胞特征。

图1 | SpaTopic在肿瘤微环境中识别空间域的工作流程

通过这一流程,SpaTopic能够准确识别并表征具有一致细胞组成和基因表达模式的空间域。该框架不仅适用于单一数据集分析,还支持跨数据集的空间域定量比较和功能挖掘。

其输出的内容可以用于多种下游分析:

  1. 基于细胞类型组成标注空间域

  2. 分析空间域之间的相互作用

  3. 高效捕捉已知的空间域,如TB和TLS

  4. (将来自不同样本的celltopic进行聚类,得到MetaTopics)比较不同空间域的MetaTopics

胰腺导管腺癌中肿瘤相关空间域的注释

在本研究的这一部分中,作者利用SpaTopic框架对胰腺导管腺癌(PDAC)中的肿瘤相关空间域进行了详细注释。通过将空间转录组数据与单细胞转录组数据整合,SpaTopic能够识别和解析PDAC肿瘤微环境中的不同空间域,特别是肿瘤边界(TB)区域。研究结果表明,TB区域的细胞组成与肿瘤核心和正常组织显著不同,富含成纤维细胞和某些免疫细胞,这些细胞在基因表达模式上表现出明显的差异。

图2 | SpaTopic对胰腺导管腺癌中肿瘤相关空间域的注释

原发性肝癌中TLSs的精准预测

作者使用SpaTopic框架对原发性肝癌中的三级淋巴结构(TLSs)进行了精准预测。TLSs是肿瘤微环境中特有的免疫区域,富含B细胞、T细胞和树突状细胞等免疫细胞,通常与肿瘤的免疫反应和患者的预后相关。通过分析肝癌的空间转录组数据,SpaTopic成功识别出TLSs的空间分布,并确定了其标志性基因表达模式。在多个数据集中,TLSs的空间域与患者生存率显著相关,这表明TLSs可能是肝癌预后的重要生物标志物。

图3 | SpaTopic在原发性肝癌中对三级淋巴结构的精准预测

SpaTopic衍生基因标记集提升TLS预测准确性

在这一部分,研究团队进一步分析了SpaTopic生成的特定基因标记集(TLS-25)对TLS预测的准确性提升。TLS-25基因集由SpaTopic生成,能够在不同癌症类型中稳定识别TLSs区域,并且在预测准确性上显著高于传统标记基因集。通过对多个肿瘤数据集的验证,TLS-25的预测结果与患者预后显著相关,证明了这一基因标记集在不同类型肿瘤中具有较强的迁移能力。

图4 | SpaTopic衍生的基因标记集提升了TLS预测的准确性

跨肿瘤边界的细胞类型结构解析

肿瘤边界是肿瘤细胞与周围基质细胞及免疫细胞相互作用的关键区域,其细胞组成和基因表达特征与肿瘤核心区域和正常组织显著不同。通过在不同的肿瘤类型中识别TB区域,研究揭示了TB区域的成纤维细胞、巨噬细胞和特定免疫细胞的聚集模式,这些细胞在调控肿瘤微环境、促进肿瘤生长和逃避免疫监视方面可能起到重要作用。SpaTopic的分析显示,TB区域的细胞类型分布和相应的基因表达特征是肿瘤微环境复杂异质性的关键表现之一。

图5 | 跨肿瘤边界的细胞类型结构解析

结直肠癌与肝转移肿瘤中空间域的比较分析

肿瘤原发部位和转移部位的空间结构和细胞组成可能存在差异,这种差异对肿瘤的生物学特性和侵袭性有重要影响。通过跨数据集分析,SpaTopic识别并注释了原发性结直肠癌和肝转移肿瘤中的特定空间域(MetaTopics),并对其细胞组成、基因表达特征进行了深入对比。研究发现,原发肿瘤和转移肿瘤在空间结构上存在共性,例如一些共享的MetaTopics,但也表现出独特的空间域特征。例如,转移肿瘤中一些代谢相关基因和免疫细胞亚群的富集程度显著增加,暗示这些基因和细胞群可能与肿瘤的转移能力和对宿主环境的适应性相关。

图6 | 结直肠癌与肝转移肿瘤中空间域的比较分析

此外,研究还显示某些特定MetaTopics在肿瘤的转移过程中表现出明显的变化。例如,原发肿瘤中特异的MetaTopics主要与能量代谢和细胞增殖相关,而转移肿瘤中富集的MetaTopics涉及脂肪酸代谢和炎症反应等过程。通过揭示原发和转移肿瘤之间的空间结构差异,此分析为理解肿瘤的转移机制提供了新见解,并为未来开发靶向转移肿瘤的治疗方法奠定了基础。

图7 | 结直肠癌和肝转移肿瘤中不同MetaTopics的基因表达模式

总结

本文提出了一个名为SpaTopic的统计学习框架,用于解析肿瘤微环境中的空间结构和功能域。该框架整合了空间转录组数据和单细胞转录组数据,通过主题建模识别出肿瘤中的不同空间域。

SpaTopic不仅能够精准识别不同类型肿瘤的关键空间域,还能提供丰富的基因标记信息,以支持不同肿瘤的跨数据集分析。例如,基于SpaTopic生成的TLS-25标记基因集在多种癌症中表现出较高的预测准确性,这不仅有助于TLS的识别,还与患者的生存率相关联。此外,原发肿瘤和转移肿瘤间的MetaTopics对比揭示了空间结构的差异性,尤其是在代谢相关基因和免疫细胞富集方面。这些研究结SpaTopic果展示了SpaTopic在肿瘤微环境解析和肿瘤空间异质性分析中的应用潜力。

Algernon点评

SpaTopic框架的创新性在于它整合了空间转录组数据和单细胞数据,使用了主题建模的方法将空间转录组的无监督聚类和反卷积分析有机结合,识别肿瘤微环境中的空间功能域。并且,MetaTopic的比较分析有效避免了数据整合的批次问题。与传统方法相比,SpaTopic更具灵活性和解析能力,能够精确地识别不同空间区域的细胞构成及其基因表达特征。

SpaTopic成功运用了LDA主题模型和去卷积等多种方法,为肿瘤空间结构的量化研究提供了新的工具。这种框架的优势在于能够更直观地展示肿瘤内部不同区域的功能差异。但在实际操作中,SpaTopic依赖于输入的无监督聚类的分辨率以及反卷积的结果(也就是依赖于单细胞注释的精细程度),算法对于簇优化为空间域这一步过于简单,大部分情况下使用的还是无监督聚类的结果。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值