单细胞转录组学生物标志物和靶点挖掘的新方法

本文介绍了如何利用动态网络生物标志物(DNB)方法在单细胞转录组学中挖掘生物标志物和靶点。DNB方法能够揭示生物学过程的动态变化,尤其在肿瘤研究中具有重要意义。通过对结直肠癌癌旁组织的B细胞分析,发现DNB基因DHX9是CRC早期干预的潜在预后标志物和免疫靶点。
摘要由CSDN通过智能技术生成

单细胞转录组学(sc-RNAseq)研究,可以更加有效的解释组织的异质性,从单个细胞分辨率来解释更多bulk水平上难以解释的生物学问题。已经广泛用于肿瘤异质性、细胞发育、免疫微环境等课题研究。其产生的海量数据以及个性化分析越来越受到重视,并需要新的方法来挖掘背后的生物学意义。

生物标志物以及候选基因的挖掘在肿瘤免疫和细胞发育等研究中一直是研究的重点和热门。已有的生物标志物是基于差异分析或者无尺度网络中核心基因的方法来进行挖掘的;但是这些方法只能挖掘静态的生物标志物;而忽略了大多数疾病以及生物学过程,如肿瘤进展和免疫反应等都是一个动态变化的过程[1]。不同于静态的分析方法,动态生物标志物(DNB)方法是一种基于稳健的隐马尔可夫数学模型,对具有时序的组学数据进行网络水平的建模,主要用于生物学系统的临界时期或者临界状态进行鉴定,很适合生物学过程的研究(图1)。例如,2018年发表在《Nat Commun》的一项研究对肝癌原位移植小鼠的进行建模开展 DNB 的研究,基于转录组学基因表达图谱,检测肝癌肺转移的早期预警信号;进一步通过 DNB 评分获得了DNB核心基因钙离子传导蛋白基因(Calmodulin-like-protein 3,CALML3),通过实验验证表明与 CALML3 与肝癌增殖、侵袭、侵移呈正相关,而且证实了敲低 CALML3 能够作为转移的抑制剂[2]。

image.png

图1:DNB优势doi:10.1038/nrd.2016.233

同时DNB 是一种基于“数据驱动”的方法,没有先验假设,无需事先指定功能相关

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>