
拓扑学
文章平均质量分 68
你一身傲骨怎能输
大家好,我是傲骨,一名热爱游戏开发的程序员,主要是游戏客户端研发方向。
我拥有计算机科学和应用数学学士学位,并在游戏行业工作了超过10年。我参与过多个独立游戏项目,从概念设计到发布,积累了丰富的实践经验。
我会定期分享相关技术经验供大家学习和参考,已有的博客文章也会随着时间而逐渐更新与优化,我会尽量将每一篇文章写写满干货,让大家能阅读后有所收获,鉴于本人还在公司工作暂时不开启交流群,后期会逐渐开启交流群并且研发一些作品展示实战效果。对于一些购买我的技术专栏以及帮忙推荐给身边朋友的表示感谢,感谢您的支持,一些专栏的文章会跟进公司项目实战经验不断的优化和更新,同时会替换掉烂文。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
拓扑空间特性:数学与生活的奇妙对应
这篇科普文章用生动比喻解释拓扑学核心概念:连通性如无墙阻隔的房间;紧性像有限毯子盖全屋;可分性如可数旗子插满草坪;可度量性指能用尺子测距;Hausdorff性描述各自私人空间;第一/第二可数性类比邻居名单与标准地图;正则/正规性阐述点/闭集分离特性。最后用口诀总结:连通无阻隔、紧性有限覆盖、可分可数稠密、可度量化距离、Hausdorff互不扰、可数性有基组、正则正规能分离。全文通过日常比喻将抽象拓扑性质形象化,降低理解门槛。原创 2025-07-24 01:24:54 · 441 阅读 · 0 评论 -
拓扑学轻松懂:基与子基的趣味解释
摘要: 基(Basis)和子基(Subbasis)是拓扑学中的重要概念,可用拼图和积木形象化理解。基是“标准拼图块”,通过任意并集生成所有开集,如实数轴上的开区间。子基是“原材料积木”,需先进行有限交集生成基,再通过并集构造开集,例如平面上的竖条和横条组合成矩形基。基直接构造开集,而子基需两步操作。口诀:基是“拼图块”,子基是“原材料”,通过交并运算构建拓扑空间。形象比喻中,基如乐高标准件,子基如基础积木,需组合后才能搭建结构。原创 2025-07-24 01:17:21 · 314 阅读 · 0 评论 -
开集与闭集:数学边界的通俗解读
摘要:开集和闭集是拓扑学的基本概念。开集(如区间(0,1))没有边界点,内部任意点都有活动空间;闭集(如[0,1])包含所有边界点,其补集是开集。两者关系:空集和全集既开又闭,多数集合非开即闭。形象比喻:开集像无围墙公园,闭集像带围墙院子。定义依赖于具体拓扑空间,但核心区别在于是否包含边界点。原创 2025-07-24 01:13:48 · 699 阅读 · 0 评论 -
拓扑空间:橡皮泥般的数学世界
摘要:拓扑空间可以形象理解为“一堆点”加一套“开集”规则,定义哪些点的集合算“连成一片”(如橡皮泥可拉伸但不能撕裂)。生活中的例子包括城市地图的分区或朋友圈的分组。数学上只需满足开集的三条基本规则(空集/全集开、并集开、有限交集开),即可抛开具体形状研究连续性等性质。核心在于描述“邻近关系”而非精确几何。原创 2025-07-24 00:59:05 · 435 阅读 · 0 评论 -
拓扑学:咖啡杯与甜甜圈的奇妙联系
拓扑学是研究空间在连续变形下不变性质的数学分支,关注形状的连通性、孔洞等结构而非具体度量。其核心概念包括拓扑空间、同胚、基本群等,分支涵盖点集拓扑、代数拓扑等。拓扑学在物理、化学、计算机等领域有广泛应用,典型例子如莫比乌斯带和四色定理。它通过连续映射和分类问题揭示形状的本质特征,成为现代科学的重要基石。原创 2025-07-24 00:45:52 · 362 阅读 · 0 评论