
线性代数
文章平均质量分 89
你一身傲骨怎能输
大家好,我是傲骨,一名热爱游戏开发的程序员,主要是游戏客户端研发方向。
我拥有计算机科学和应用数学学士学位,并在游戏行业工作了超过10年,专注于使用Unity和C#进行游戏开发。我参与过多个独立游戏项目,从概念设计到发布,积累了丰富的实践经验。
我会定期分享相关技术经验供大家学习和参考,已有的博客文章也会随着时间而逐渐更新与优化,我会尽量将每一篇文章写写满干货,让大家能阅读后有所收获,鉴于本人还在公司工作暂时不开启交流群,后期会逐渐开启交流群并且研发一些作品展示实战效果。对于一些购买我的技术专栏的表示感谢,感谢您的支持,一些专栏的文章会跟进公司项目实战经验不断的优化和更新,同时会替换掉烂文。
展开
-
动画PCA压缩:用均值+差异还原数据
本文通过一个具体案例演示了PCA在动画数据压缩与还原中的应用过程。首先计算4帧二维动画数据的均值并中心化,然后求协方差矩阵的特征值和特征向量确定主成分方向。通过将数据投影到主成分实现压缩,仅需保存均值、主成分向量和系数。还原时利用"均值+系数×主成分向量"公式重建原始数据,其中变化较小的次要成分被舍弃。整个过程验证了PCA通过保留主要差异特征实现高效数据压缩的本质,即用平均动作加关键差异分量来近似表示完整动画数据,在保证重建精度的同时显著减少数据量。原创 2025-05-26 11:33:20 · 593 阅读 · 0 评论 -
协方差矩阵:动画压缩的隐藏密码
摘要: 协方差矩阵在动画压缩中的作用是统计角色关节间的动作联动关系,通过PCA找到代表性的“主动作模式”(主成分)来降低数据维度。压缩时,将每帧动画投影到主成分上得到低维系数;解压时,用这些系数与主成分线性组合还原动画,类似于用标准积木重建大楼。协方差矩阵的特征向量作为“动作基”,结合均值中心化处理,实现高效数据压缩与还原。代码示例展示了从协方差矩阵计算到数据重建的全流程,证明该方法能显著减少存储需求(如1000×60维→1000×5维)同时保留核心动作特征。原创 2025-05-26 11:18:36 · 783 阅读 · 0 评论 -
协方差矩阵:人脸图像PCA特征提取
本文介绍了协方差矩阵在人脸图像PCA中的应用原理。通过学生成绩类比,协方差矩阵可视为记录各维度(如像素)之间关联关系的统计表。在人脸分析中,它量化了不同像素灰度值的变化关联性。PCA通过分解协方差矩阵,提取特征向量和特征值,从而找到最具代表性的人脸变化模式(如"特征脸")。协方差矩阵作为核心工具,帮助从高维像素数据中识别关键特征,实现降维和分析。文末还提供了简化代码示例展示计算过程。原创 2025-05-26 11:06:54 · 280 阅读 · 0 评论 -
PCA实战:协方差矩阵与特征方程揭秘
PCA降维的核心是对协方差矩阵进行特征分解,而非原始数据矩阵。其流程包括数据中心化、计算协方差矩阵、求取特征值与特征向量(解Cv=λv),其中特征向量代表主成分方向,特征值反映主成分重要性。PCA适用于图形学多个场景,如点云简化(提取主方向/平面)和动画数据压缩(保留关键运动模式)。通过投影到主成分空间,既能降低数据维度,又能保持主要特征信息,实现高效的数据处理与分析。原创 2025-05-26 10:52:37 · 755 阅读 · 0 评论 -
魔法门下的特征值奥秘
摘要 特征值是线性代数中的重要概念,可以形象地理解为“魔法门”下方向不变的拉伸倍数(特征向量保持方向,特征值决定伸缩程度)。求解特征值涉及解特征方程det(A-λI)=0。在游戏开发中,特征值广泛应用于物理引擎(如惯性主轴分析)、动画骨骼稳定变换、图形学PCA降维、震动共振分析及AI路径规划。通过Python的NumPy库可快速计算特征值和特征向量,例如分析刚体的主轴旋转行为。口诀“魔法门,拉长缩短不扭曲”帮助记忆其核心逻辑。代码示例展示了如何用特征值分解优化刚体物理模拟,如陀螺自转的稳定性分析。特征值技术原创 2025-05-26 10:43:23 · 786 阅读 · 0 评论 -
相似变换:游戏世界的魔法镜子
文章摘要 相似变换是数学中通过可逆矩阵转换坐标系的方法,本质是“换个角度看同一个东西”,核心公式为 ( B = P^{-1}AP )。在生活中,它类似旋转魔方(结构不变,视角改变)、翻译语言(语义不变,表达改变)或换装游戏(角色不变,外观改变)。在游戏开发中,相似变换广泛应用于: 坐标转换:如3D模型从局部坐标系到世界坐标系的变换; 物理模拟:惯性张量在不同坐标系下的转换; 图形优化:通过矩阵对角化简化复杂变换(如缩放/旋转); 动画与视角:骨骼动画的层级变换、摄像机视角切换。 代码示例展示了如何用Pyth原创 2024-08-06 19:14:49 · 139 阅读 · 1 评论 -
线性变换:游戏世界的魔法引擎
线性变换是数学中一种重要的变换方式,其核心特点是保持直线的直线性和比例关系不变。在现实生活中,线性变换可以类比为对图像的拉伸、缩放、旋转和翻转等操作。在数学上,线性变换通过矩阵来描述,公式为 (\mathbf{y} = A\mathbf{x}),其中 (A) 是变换矩阵,(\mathbf{x}) 和 (\mathbf{y}) 分别是变换前后的向量。 在游戏开发中,线性变换有着广泛的应用。例如,角色的移动、旋转和缩放,摄像机视角的切换,3D场景到2D屏幕的投影,角色骨骼动画的变形,以及物理模拟和碰撞检测等,都原创 2025-02-08 23:50:42 · 121 阅读 · 0 评论 -
生动形象的解释下正交性与正交变换以及他们在游戏中的实际应用
想象你在房间里,地板和墙壁相交的那条线是“x轴”,地板和另一面墙的交线是“y轴”,而从地板垂直向上的方向是“z轴”。这三个方向互相垂直——这就是正交。想象你在房间里转身、原地旋转、或者把整个房间搬到另一个地方,但房间的形状、大小、角度都没变,只是方向变了。这种“旋转”或“翻转”就是正交变换。正交性:互相垂直,互不干扰,像房间的三面墙。正交变换:只转不变形,像旋转乐高积木。游戏应用:角色旋转、摄像机切换、骨骼动画、物理主轴、正交投影……都离不开正交性和正交变换!我们用具体例子。原创 2025-02-08 23:51:13 · 85 阅读 · 0 评论 -
二次型与惯性定理:游戏中的数学魔法
二次型在数学和物理中扮演着“形状生成器”的角色,它决定了物体在不同方向上的弹性或形状,如椭圆、抛物线等。通过二次型,我们可以描述物体的碰撞检测、能量分布等。惯性定理则进一步简化了复杂问题,它告诉我们,无论坐标系如何旋转,二次型总能被对角化,找到一组“主轴”,使问题分解为三个独立的方向。在游戏开发中,二次型和惯性定理被广泛应用于物理模拟、动画骨骼插值、AI数据分析等领域,极大地提高了计算效率和动画的自然度。通过找到物体的主轴,开发者可以更高效地处理旋转、碰撞检测和动画过渡,使游戏体验更加流畅和真实。原创 2025-02-08 23:52:19 · 120 阅读 · 0 评论 -
对角化:简化复杂矩阵的魔法钥匙
对角化是一种将复杂矩阵通过变换基底转化为对角矩阵的数学方法,使得原本复杂的运算变得简单。通过形象比喻,如搬家时拆解家具、乐队指挥让乐手独奏、魔法盒子用钥匙打开,帮助理解对角化的概念。数学上,对角化将矩阵A转化为PDP⁻¹的形式,其中P是特征向量矩阵,D是对角矩阵。在实际应用中,对角化广泛用于动画、物理模拟、图形学、微分方程求解和图像处理等领域,简化了复杂变换、模拟和特征分析。总结口诀强调了对角化将复杂问题拆解为简单小问题,使运算更加高效。原创 2025-02-08 23:52:49 · 104 阅读 · 0 评论 -
齐次线性方程组:游戏开发中的隐形力量
齐次线性方程组是数学中一类特殊的方程组,其标准形式为 ( A * x = 0 ),其中 ( A ) 是系数矩阵,( x ) 是未知向量,( 0 ) 是全零向量。通过生活中的比喻,如多条绳子拉一个结或多条路交在原点,可以形象地理解齐次线性方程组的特性。其解分为两种情况:只有零解(所有绳子拉紧,结静止在原点)和有无穷多解(有松的绳子,结可以自由移动)。在游戏开发中,齐次线性方程组广泛应用于计算法向量、求空间交线、约束系统与骨骼动画、物理引擎中的力平衡、3D投影与相机矩阵以及计算空间中的自由运动方向等场原创 2025-02-08 23:53:19 · 117 阅读 · 0 评论 -
行列式:面积与体积的魔法放大器
行列式在数学和游戏开发中具有重要应用,可以直观地理解为“面积/体积的放大倍数”。二维矩阵的行列式表示面积的缩放比例,三维矩阵的行列式表示体积的缩放比例。行列式的绝对值表示缩放倍数,正负号则指示是否发生镜像变换。行列式为0时,表示信息丢失,矩阵不可逆。在游戏开发中,行列式用于判断变换是否可逆、法线方向、碰撞体积缩放、UV映射以及空间坐标系的“手性”判断等。通过代码可以直接获取矩阵的行列式,并在模型导入、骨骼动画等场景中应用。总结口诀为:行列式=面积/体积放大倍数;行列式=0,信息丢失,变换不可逆;行列式<原创 2025-02-08 23:53:50 · 130 阅读 · 0 评论 -
矩阵逆:魔法的“解咒”
矩阵可以看作一种“变形魔法”,将向量从一个状态变换到另一个状态,而逆矩阵则是“解咒魔法”,能够将变形后的状态还原回原始状态。例如,矩阵A将向量拉伸,逆矩阵A⁻¹则将其缩回原状。然而,并非所有矩阵都有逆矩阵,只有行列式不为零的矩阵才是可逆的。不可逆的矩阵(如奇异矩阵)会导致信息丢失,无法还原。在图形学中,投影矩阵和缩放为0的变换都是不可逆的。总结来说,矩阵变形,逆矩阵还原,但只有不丢失信息的变换才有逆矩阵。原创 2025-02-08 23:54:20 · 110 阅读 · 0 评论 -
矩阵运算:从拼图叠加到魔法变形
本文通过生动的比喻和具体案例,详细解释了矩阵的基本运算及其应用。矩阵加法被比喻为拼图叠加,矩阵乘法则像工厂流水线,矩阵与向量相乘则被视为变形魔法。此外,文章还介绍了矩阵转置、逆矩阵以及组合变换的概念,并通过二维图形变换、骨骼动画、食谱配料和摄像机视角变换等实际案例,展示了矩阵在图形学、动画和日常生活中的广泛应用。通过这些比喻和案例,读者可以更直观地理解矩阵运算的本质及其在实际问题中的应用。原创 2025-02-08 23:54:51 · 129 阅读 · 0 评论 -
反射向量公式:揭秘光线反射的数学奥秘
入射向量 v被拆成“镜面方向”和“镜面平面”两部分。反射就是把“镜面方向”部分反转,平面部分保持不变。这样反射光线就满足“入射角等于反射角”的物理规律。原创 2025-05-18 05:11:12 · 471 阅读 · 0 评论 -
投影变换:从3D到2D的魔法相机
投影变换是将三维世界转换为二维图像的过程,类似于将三维物体“拍成照片”显示在屏幕上。它分为正交投影和透视投影两种类型。正交投影将物体“压扁”到平面上,适合2D游戏和建筑设计;透视投影则模拟人眼视角,近大远小,适合3D游戏。在游戏中,投影变换用于渲染画面、生成角色影子、碰撞检测和UI显示。通过投影矩阵,游戏引擎将三维场景转换为二维图像,使玩家能在屏幕上看到立体的游戏世界。投影变换的核心在于将三维坐标通过数学公式转换为屏幕上的像素坐标,最终实现游戏画面的呈现。原创 2025-05-18 04:54:20 · 835 阅读 · 0 评论 -
正交基:游戏角色动作与碰撞的隐形指南针
正交基在游戏开发中扮演着核心角色,它就像角色的“指南针”和“量尺”,确保动作、动画和碰撞检测的精确性。通过正交基,角色的动作有了明确的方向,动画骨骼的运动有了自然的基础,碰撞检测能够准确判断物体间的空间关系。无论是角色的移动、转身,还是动画的播放,正交基都提供了必要的空间参考。在碰撞检测中,正交基(特别是法向量)用于计算物体与墙面的最短距离,从而判断是否发生碰撞。简而言之,正交基是游戏世界中不可或缺的“方向尺子”,让虚拟角色的行为更加真实和流畅。原创 2025-05-18 04:35:40 · 883 阅读 · 0 评论 -
正交基与正交投影:游戏世界的尺子与影子
正交基与正交投影在游戏中扮演着重要角色。正交基如同互相垂直的“尺子”,用于描述游戏世界中的坐标系,包括全局坐标系和局部坐标系,决定了角色和物体的位置与朝向。正交投影则像“影子”,将三维信息投射到二维平面上,应用于角色影子的生成、碰撞检测以及摄像机视角的设置。例如,角色跳跃时需要计算与平台的距离,正交投影帮助判断角色是否能安全着陆。此外,正交投影摄像机在2D游戏中避免了透视变形,确保远近物体大小一致。总之,正交基为游戏世界提供了方向,而正交投影则让游戏中的影子、碰撞和视角更加真实。原创 2025-05-18 04:29:01 · 451 阅读 · 0 评论 -
特征分解与SVD:游戏开发中的魔法工具箱
特征分解(Eigen Decomposition)和奇异值分解(SVD)是线性代数中的两种重要方法,广泛应用于游戏开发中的动画、物理、碰撞和特效等领域。特征分解通过找出矩阵的特征向量和特征值,揭示物体的主方向和自转方式,常用于刚体物理和动画骨骼分析。SVD则将复杂的变化分解为旋转和拉伸的简单步骤,用于动画压缩、碰撞盒拟合、刚体对齐和图像处理。在舞蹈动作压缩中,SVD通过分解动作矩阵,提取主要动作模式并去除噪声,实现动画的流畅和高效存储。这两种方法为游戏开发提供了强大的数学工具,帮助开发者优化数据处理和系统性原创 2025-05-18 03:24:38 · 736 阅读 · 0 评论 -
QR分解:游戏开发中的“万能整理师”
QR分解是一种将矩阵A分解为正交矩阵Q和上三角矩阵R的方法,形象比喻为整理书架或搭帐篷,将杂乱无章的向量整理成互相垂直、标准化的形式。在游戏开发中,QR分解广泛应用于最小二乘拟合、摄像机正交化和复杂物理求解。例如,在角色动作捕捉中,QR分解能高效稳定地处理噪声数据,使动作更平滑;在摄像机控制中,它能防止方向向量歪斜,避免画面畸变;在物理仿真中,它能稳定求解约束系统,提升布料、刚体等效果的真实性。总之,QR分解在游戏开发中扮演着“万能整理师”的角色,确保数据、方向和约束的整齐、稳定与高效,从而提升游戏体验的流原创 2025-05-18 03:08:44 · 481 阅读 · 0 评论 -
矩阵分解:拆解魔方的游戏开发秘籍
矩阵分解是将一个复杂的变换矩阵拆解为平移、旋转和缩放三个基本操作的过程。通过形象的“魔方”比喻,可以将其理解为将魔方的移动(平移)、旋转和拉伸(缩放)分别提取出来。在3D游戏中,矩阵分解常用于角色动画、物体跟随、物理引擎和关卡编辑器中。具体步骤包括:提取平移(矩阵最后一列)、计算缩放(矩阵前三列的长度)和推导旋转(去掉缩放后的矩阵部分)。通过矩阵分解,开发者可以更灵活地控制和理解物体的变换,从而实现动画、物理模拟和编辑器操作等功能。原创 2025-05-18 02:20:47 · 683 阅读 · 0 评论 -
Slerp:平滑旋转的魔法钥匙
Slerp(Spherical Linear Interpolation,球面线性插值)是一种用于在两个旋转之间找到最短、最自然路径的插值方法,能够实现平滑过渡。与普通线性插值(Lerp)不同,Slerp适用于旋转变化,确保旋转速度均匀且路径最短,避免“穿越”球体或出现不自然的动画效果。通过形象比喻,如地球仪上的大圆弧飞行或方向球的平滑转动,可以更好地理解Slerp的工作原理。在游戏动画中,Slerp广泛应用于角色转身、摄像机跟随和骨骼动画等场景,确保动作自然流畅。其数学本质是沿着球面最短弧线匀速滑动方向向原创 2025-05-18 01:46:03 · 787 阅读 · 0 评论 -
揭秘欧拉角万向锁:旋转中的“卡脖子”陷阱
欧拉角通过三个旋钮(Pitch、Yaw、Roll)描述三维空间的旋转,但在某些情况下会出现“万向锁”问题,即当两个旋转轴重合时,失去一个旋转自由度,导致旋转失效。这种现象在飞机游戏或3D建模中表现为旋转“卡住”或方向混乱。万向锁的本质是欧拉角依次绕轴旋转时,中间轴旋转到90°导致前后轴重合。为避免万向锁,可以使用四元数(Quaternion),它通过整体旋转避免轴重合问题,或使用旋转矩阵,但四元数更高效。此外,限制旋转范围(如Pitch不超过±89°)也能减少万向锁的发生,但并非根本解决方案。原创 2025-05-18 01:40:35 · 561 阅读 · 0 评论 -
四元数:游戏中的魔法陀螺与平滑旋转
四元数是一种用于表示三维空间旋转的数学工具,其核心特点在于能够避免欧拉角在旋转时可能出现的“万向锁”问题,从而实现更平滑、自然的旋转效果。通过“魔法陀螺”和“方向指南针”等比喻,可以形象地理解四元数如何让物体在三维空间中自由旋转而不“卡住”。在游戏中,四元数广泛应用于角色和摄像机的平滑旋转、动画骨骼的插值、物体朝向目标、摄像机轨道运动以及物理模拟中的旋转等场景。相较于欧拉角,四元数虽然数学复杂度较高,但其无万向锁和插值平滑的优势使其成为游戏开发中处理旋转问题的首选工具。通过SLERP(球面线性插值)技术,四原创 2025-05-18 01:35:03 · 639 阅读 · 0 评论 -
齐次坐标:游戏世界的魔法标签
齐次坐标通过在原有坐标后添加一个分量(如二维坐标变为(x, y, 1)),使得平移、旋转、缩放等仿射变换能够通过矩阵乘法统一处理,极大提高了计算效率。在游戏开发中,齐次坐标和仿射变换广泛应用于角色移动、摄像机视角切换、场景搭建、碰撞检测和渲染管线等场景。例如,Unity中的Transform组件和OpenGL中的顶点变换都依赖于齐次坐标和仿射变换矩阵。通过齐次坐标,游戏中的各种动态效果得以灵活实现,简化了代码和计算过程。原创 2025-01-02 23:54:35 · 233 阅读 · 0 评论 -
投影仪投影:从三维到二维的奇妙转换
“投影仪投影”是一种将高维信息压缩到低维空间的过程,类似于将三维物体的影子投射到二维墙面上。生活中常见的例子包括手影游戏、阳光下的影子以及地图投影。在数学中,投影通过向量和基底来解释,例如计算力在斜坡方向上的分量。在游戏和图形学中,3D场景通过投影变换显示在2D屏幕上,角色的影子也是通过投影实现的。主成分分析(PCA)则是将高维数据投影到主成分方向上,以便用更少的维度描述数据的主要特征。总之,投影是一种简化复杂信息的方法,使其更易于观察、分析和处理。原创 2025-01-02 23:54:03 · 92 阅读 · 0 评论 -
基底变换:游戏世界的坐标革命
基底是坐标系的方向和单位长度,基底的变化意味着坐标轴的方向和单位长度发生改变。这种变化不会改变空间本身,但会改变点的坐标数字和描述方式。基底变化在几何上表现为空间参考系的改变,而在实际应用中,如PCA(主成分分析)中,基底变化有助于简化数据分布和提升分析效率。在游戏开发中,基底变换(如地图旋转、视角切换)需要重新计算物体的位置、方向、速度等属性,并调整玩家输入、物理引擎、渲染视角、UI标记、动画骨骼系统以及AI寻路等,以确保游戏逻辑和表现的一致性。常用的技术手段包括变换矩阵、局部坐标与世界坐标的转换、输入适原创 2025-01-02 23:56:17 · 96 阅读 · 0 评论 -
生动形象的解释下线性变换与几何意义
想象你有一块平整的橡皮布,上面画着一个正方形和一些点。你可以用手拉伸、压缩、旋转这块橡皮布,但不能把它撕裂、折叠或打结。拉伸:把橡皮布朝某个方向拉长。压缩:把橡皮布朝某个方向压扁。旋转:把橡皮布整体转个角度。剪切:像推拉一副扑克牌那样,让正方形变成平行四边形。这些操作都叫线性变换。直线还是直线,平行还是平行,原点不动。线性变换,就像用手把橡皮布拉伸、旋转、剪切,让图形整体变形但不撕裂、不打结,在数据世界里,它帮我们用新的视角看问题,原创 2025-01-02 23:57:22 · 146 阅读 · 0 评论 -
协方差矩阵:揭秘行为关系的秘密
协方差矩阵是数据分析中用于衡量不同变量之间关系的工具,可以形象地比喻为“行为关系大表”,揭示变量之间的“亲疏远近”。特征向量和特征值则分别代表“最佳观察方向”和“该方向上的热闹程度”,帮助识别数据变化最显著的方向。通过协方差矩阵,可以分析出哪些变量正相关、负相关或无关,进而理解数据的内在结构。例如,在游戏行为分析中,打怪次数和跑图距离可能正相关,而睡觉时间和打游戏时间可能负相关。主成分分析(PCA)正是基于协方差矩阵的特征向量和特征值,提取数据的主要变化方向,简化复杂数据的分析。原创 2025-01-13 23:47:45 · 97 阅读 · 0 评论 -
游戏策划教你用协方差矩阵看玩家行为
协方差矩阵的计算可以通过游戏策划的视角形象化理解。假设观察五个玩家的“打怪次数”和“跑图距离”两项行为,首先计算每项行为的平均值,然后计算每个玩家与平均值的偏差。接着,通过偏差的乘积计算协方差,判断两项行为是否正相关。方差则通过偏差的平方计算,反映行为的波动性。最后,将方差和协方差拼成协方差矩阵,对角线为方差,非对角线为协方差。协方差矩阵能帮助分析玩家行为的相关性,为后续行为分析和推荐系统提供基础。原创 2024-10-04 23:23:35 · 486 阅读 · 0 评论 -
3D模型自动摆正:特征向量解密
本文通过3D游戏中的“自动摆正模型”案例,形象讲解了特征值与特征向量的应用。首先,通过收集模型的点云数据,计算协方差矩阵,找出模型的主要分布方向。通过特征值分解,得到特征向量和特征值,特征向量表示模型的主要方向,特征值则表示该方向的重要性。最大特征值对应的特征向量可用于自动摆正模型,使其最长边朝上,次长边朝前。此外,特征值与特征向量还可应用于物理模拟和动作识别。文章还提供了Python伪代码演示如何实现这一过程。总结口诀指出,特征向量帮助找出主要方向,特征值表示方向的重要性,应用场景包括自动摆正模型、物理主原创 2024-12-14 21:26:01 · 405 阅读 · 0 评论 -
特征向量:游戏中的魔法箭头与主方向
特征值与特征向量是线性代数中的重要概念,可以通过生动的比喻来理解。矩阵可以看作是对物体进行拉伸、旋转或压缩的操作,而特征向量则是那些在变换后方向不变的特殊方向,特征值则是这些方向被拉伸或压缩的倍数。例如,弹簧的某些方向在拉伸或压缩后仍保持原方向,只是长度变化,这就是特征向量和特征值的体现。 在游戏开发中,特征值与特征向量有广泛的应用。例如,通过计算物体的惯性张量矩阵的特征向量和特征值,可以确定物体的主轴方向,从而更真实地模拟物体的旋转和碰撞。在角色动画中,特征分解可以提取骨骼运动的主方向,用于动作压缩和识别原创 2024-12-13 21:10:48 · 265 阅读 · 0 评论 -
生动形象的解释下逆矩阵存在的条件
方阵才有逆,锁钥要独立。秩等于行数,钥匙全解密。有逆能还原,无逆就丢失。原创 2024-12-11 23:56:10 · 361 阅读 · 0 评论 -
逆矩阵:解锁数学世界的万能钥匙
逆矩阵在数学和实际应用中扮演着“解锁钥匙”的角色,用于还原被矩阵变换后的数据。逆矩阵存在的条件包括矩阵必须是方阵、满秩且不塌缩。在实际应用中,逆矩阵广泛用于游戏开发中的坐标变换、摄像机视角调整、物理引擎计算、骨骼动画、图像处理等场景。例如,角色在世界坐标和本地坐标之间的切换、摄像机视图的逆向还原、物理引擎中的力与运动计算等,都依赖于逆矩阵的“解锁”功能。通过逆矩阵,开发者能够实现复杂的变换和还原操作,确保游戏和图形处理的准确性和灵活性。原创 2024-12-11 23:55:37 · 428 阅读 · 0 评论 -
SVD分解:用画笔还原图像的魔法
本文通过生动的比喻和实例,解释了图像与矩阵的关系、SVD分解的原理及其在图像压缩中的应用。图像可以看作矩阵,灰度图为单矩阵,彩色图为三个矩阵(RGB通道)。SVD分解将图像拆解为“基础画笔”和“画法”,通过保留前k个奇异值(最重要的画笔),可以实现图像压缩。秩的高低决定了图像的细节丰富程度:秩高时,图像清晰;秩低时,图像模糊。SVD压缩通过保留主要信息,大幅减少数据量,但会丢失细节。文章还通过伪代码展示了SVD分解的实际操作,并总结了“秩高画细,秩低画粗,SVD压缩省空间但丢细节”的口诀。原创 2024-12-03 23:26:15 · 129 阅读 · 0 评论 -
矩阵的秩:游戏开发中的空间魔法
矩阵的秩是线性代数中的一个重要概念,它表示矩阵中线性无关的行或列的数量,决定了矩阵所能覆盖的空间维度。通过生活中的比喻,如刷子的颜色组合或乐器的多样性,可以形象地理解秩的含义:秩越高,独立操作或效果越丰富;秩低则意味着受限或单调。在游戏开发中,矩阵的秩广泛应用于角色动画、物理引擎、3D变换、AI路径规划及图像处理等领域。例如,骨骼动画需要足够的秩来确保角色在三维空间中的自由活动,而图像压缩则通过降低秩来减少信息量。理解矩阵的秩有助于优化游戏效果,使其更真实、多样。原创 2024-12-01 23:09:06 · 116 阅读 · 0 评论 -
基底与维度:解锁游戏世界的自由密码
“基底”与“维度”是描述空间自由度的核心概念。维度表示可自由活动的方向数,如1维(直线)、2维(平面)、3维(空间)。基底则是构成空间的最基本方向,通过它们的组合可以到达空间中的任意点。例如,2D平面的基底是x轴和y轴,3D空间的基底是x、y、z轴。基底必须线性独立,否则空间会“缩水”。在游戏开发中,基底和维度广泛应用于角色移动、物理引擎、贴图、动画和场景构建等方面。例如,2D平台跳跃游戏通过x、y两个基底实现角色在平面上的自由移动和跳跃。正确设置基底和维度是确保游戏内容丰富性和功能完整性的关键。原创 2024-12-12 23:53:33 · 140 阅读 · 0 评论 -
线性相关与无关:从搬家到数据分析的实用指南
线性相关和线性无关是线性代数中的基本概念,用于描述向量之间的关系。线性相关指一组向量中至少有一个向量可以被其他向量的线性组合表示,而线性无关则指没有任何一个向量可以被其他向量组合出来。通过搬家打包和走路指路的比喻,可以形象理解这两个概念。在三维建模、数据分析和物理力分解等应用中,线性无关的向量组能确保空间的完整性和数据的简洁性。总结口诀为:线性无关的向量“独一无二”,线性相关的向量“多余”。生活中,线性无关的概念类似于团队中每个成员拥有独特技能,避免资源浪费。原创 2024-12-13 21:20:57 · 99 阅读 · 0 评论 -
向量积:游戏世界的隐形指挥棒
向量积,又称叉积,是两个向量运算后生成的新向量,它垂直于原向量构成的平面,其大小与两向量夹角的正弦值及长度相关,方向由右手定则确定。在游戏开发中,向量积有广泛应用,如确定角色朝向、计算三角形法线、判断物体相对位置以及模拟旋转效果等。通过叉积,开发者可以轻松构建角色的本地坐标系、处理光照和碰撞、判断对手位置以及实现物体的物理旋转。形象地,叉积如同“拧麻花”,右手定则则帮助直观理解其方向,是游戏开发中不可或缺的数学工具。原创 2024-12-13 21:27:02 · 84 阅读 · 0 评论 -
拧螺丝的物理奥秘:力臂与力的完美配合
本文通过螺丝刀拧螺丝的场景,详细解释了力臂和力的方向如何影响旋转效果。力臂是从螺丝轴到施力点的向量,而力的方向必须始终垂直于力臂,沿圆周切线方向,才能产生最大力矩,使螺丝旋转。文章通过具体数值和物理原理,说明了为什么拧螺丝时手和力的方向需要不断变化,始终保持垂直关系。总结指出,只有垂直于力臂的力分量才能产生旋转效果,这是拧螺丝的基本物理原理。原创 2024-12-14 21:16:40 · 90 阅读 · 0 评论