
数学建模
文章平均质量分 86
你一身傲骨怎能输
大家好,我是傲骨,一名热爱游戏开发的程序员,主要是游戏客户端研发方向。
我拥有计算机科学和应用数学学士学位,并在游戏行业工作了超过10年,专注于使用Unity和C#进行游戏开发。我参与过多个独立游戏项目,从概念设计到发布,积累了丰富的实践经验。
我会定期分享相关技术经验供大家学习和参考,已有的博客文章也会随着时间而逐渐更新与优化,我会尽量将每一篇文章写写满干货,让大家能阅读后有所收获,鉴于本人还在公司工作暂时不开启交流群,后期会逐渐开启交流群并且研发一些作品展示实战效果。对于一些购买我的技术专栏的表示感谢,感谢您的支持,一些专栏的文章会跟进公司项目实战经验不断的优化和更新,同时会替换掉烂文。
展开
-
博弈论模型(Game Theory)
博弈论就像“多人下棋”,每个人都想赢,但你的每一步,都会影响别人,别人的每一步,也会影响你。最后大家会形成一种“平衡”,这就是博弈论要研究的东西!下面我用石头剪刀布和价格战两个具体例子,分别用生活化语言和简单的数学模型来解释博弈论。石头剪刀布:大家都随机出,谁也没法稳赢。价格战:大家都怕被对方抢生意,最后可能都打折,结果都不理想。数学模型:参与者、策略、收益函数,找出大家都不想单独改变的“平衡点”。原创 2025-06-07 01:23:57 · 429 阅读 · 0 评论 -
水管大作战:轻松搞懂网络流!
《水管输水大作战:网络流模型通俗解读》用城市供水系统比喻网络流问题:源点(水厂)通过节点(分水站)和边(水管)向汇点(居民区)输水,每根水管有最大流量限制。最大流问题的核心是在不超容量的前提下优化总输送量。文章以交通、物流、电网等生活实例类比,并通过三条不同容量的输水路线案例,生动说明如何合理分配"水流"实现整体流量最大化。这种形象化讲解将复杂的网络流理论转化为易于理解的日常场景。原创 2024-09-25 23:00:54 · 107 阅读 · 0 评论 -
马尔可夫链模型(Markov Chain)
马尔可夫链,只看当前点。转移靠概率,历史不用管。用马尔可夫链来分析射击游戏,非常有趣而且实用。下面我用生动的例子来说明它在射击游戏中的应用。马尔可夫链就像“记住你上一次射击的结果”,决定你下一发子弹的命运。它能帮你预测、分析、优化射击表现,让游戏更科学、更有趣!原创 2024-09-28 00:29:07 · 807 阅读 · 0 评论 -
微分方程模型(Differential Equations)
微分方程像说明,变化速度看当前。只要初始状态明,未来走势能推清。构建微分方程其实就是把现实世界的变化规律用“变化率=某种关系”的数学语言表达出来。下面我用形象比喻+步骤+例子来讲解。变量选准先,变化率找全。关系写成式,微分方程现。原创 2025-06-07 01:06:46 · 493 阅读 · 0 评论 -
系统动力学:用浴缸和兔子讲透复杂世界
摘要:系统动力学模型是研究复杂系统随时间变化的分析方法,核心要素包括存量(如水量、资金)、流量(流入/流出速率)和反馈回路。通过浴缸水位、银行账户和生态种群等生活化类比,展现了系统各要素间的动态相互作用。典型应用场景涵盖交通拥堵、疫情传播等自调节系统。该模型通过量化变量间的反馈机制(如自动调节的浴缸),揭示复杂系统的动态规律,被称为"时间的魔法师"。(148字)原创 2024-05-22 12:49:01 · 771 阅读 · 0 评论 -
生动形象的讲解下交通流模型
交通流模型就像“交通医生”,用科学的方法帮我们诊断和治疗“堵车”问题,让城市交通更健康顺畅!下面我用生动形象的例子车流基本图:像画山一样,告诉你“车多了反而慢”。元胞自动机:像下跳棋一样,模拟每辆车怎么一步步往前挪。原创 2024-05-22 15:23:26 · 752 阅读 · 1 评论 -
四大模型网络模型 、图论模型 、交通流模型、 供应链网络模型
网络模型:点线关系,万物互联。图论模型:点线游戏,最短最优。交通流模型:车流如水,畅通无阻。供应链网络模型:环环相扣,货畅其流。原创 2025-06-06 04:35:34 · 658 阅读 · 0 评论 -
10秒搞懂SARIMA模型的神奇预测力
SARIMA模型是专为季节性数据设计的预测工具,它在ARIMA基础上增加了季节性分析能力。模型由两部分构成:普通ARIMA分析近期趋势,季节性模块则专门捕捉周期性规律(如年度/月度循环)。通过同时考虑"上月数据"和"去年同期数据",SARIMA能准确预测季节性波动,如用电量的夏冬高峰。其结构表示为SARIMA(p,d,q)(P,D,Q,s),其中s代表季节周期长度。这种双重记忆机制使其成为分析气温、销售等周期性数据的利器,就像能同时记住"昨天"和&原创 2024-05-22 18:18:41 · 770 阅读 · 0 评论 -
时间侦探:用数据预测未来
时间序列分析模型是研究随时间变化数据的数学工具,就像通过连续剧剧情预测未来发展或像天气预报员分析过去天气。常见模型包括移动平均(平滑波动)、自回归(用过去预测现在)、ARIMA(结合趋势分析)和季节性模型(捕捉周期规律)。它能用于预测(如股票价格)、发现规律(如用电高峰)和异常检测(如体重突变)。简言之,时间序列模型是"时间侦探",通过分析历史数据揭示规律并预测未来趋势。原创 2025-06-06 04:25:26 · 252 阅读 · 0 评论 -
多目标规划:鱼和熊掌如何兼得
多目标规划模型是解决多个相互冲突目标之间平衡问题的数学工具。就像妈妈买菜时要在"新鲜度"和"价格"间权衡,或高考填志愿需平衡"学校排名"、"专业喜好"和"离家距离"等因素。该模型通过数学形式表达为同时优化多个目标函数(f₁(x),f₂(x)...fn(x)),在约束条件下寻找最优折中方案,适用于从个人消费决策到企业生产计划等各种场景,本质是在"鱼与熊掌不可兼得"的情况下做出最合理的选择。原创 2024-05-24 10:57:13 · 1239 阅读 · 1 评论 -
一文读懂数学模型:世界背后的万能工具箱
数学模型就像解决问题的“工具箱”,根据不同问题选择合适工具。代数模型通过公式直接计算(如购物结算);几何模型用图形表达空间关系(如建筑设计);微分方程描述动态变化(如细菌增长);概率统计分析不确定性(如天气预报);优化模型寻找最优解(如物流调度);离散模型研究独立节点(如社交网络);仿真模型用电脑模拟现实(如飞行训练)。每种模型都像一种独特工具,将现实问题转化为可解决的数学游戏。记住口诀:代数算、几何画、微分看变化、概率讲运气、优化挑最好、离散搭积木、仿真电脑演。原创 2024-05-24 11:32:30 · 488 阅读 · 1 评论 -
何为数学建模:用数学破解现实之谜
数学建模就是用数学语言描述现实问题并通过计算分析解决的过程。它像侦探破案一样收集线索、推理规律,最终用公式或图表把问题“画”出来。比如制定食谱、优化导航路线或预测天气都是建模的应用。本质上,建模是给现实世界拍一张“数学照片”,把复杂现象变成可计算的模型,帮助我们理解和预测问题。原创 2024-05-24 11:50:02 · 724 阅读 · 1 评论 -
游戏开发三大数学建模秘籍
游戏AI、物理仿真和经济系统的数学建模分别通过不同的方法实现虚拟世界的智能化与真实化。AI建模采用有限状态机、决策树、路径规划和强化学习,让AI模拟人类决策;物理建模运用牛顿力学、碰撞检测和流体动力学等公式,还原现实中的运动规律;经济建模则通过供需模型、拍卖算法和货币流通模拟真实市场的运作。三者本质上都是将现实世界的复杂现象转化为可计算的数学规则,从而构建出逼真且可交互的游戏系统。原创 2025-06-06 04:03:04 · 327 阅读 · 0 评论 -
数学建模:现实世界的游戏说明书
数学建模是将现实问题转化为数学规则的过程,让电脑能理解和计算复杂现象。它让问题可控化(如用公式描述赛车打滑)、决策科学化(优化游戏属性)、虚拟世界真实化(支撑物理引擎),并推动创新(模拟参数变化)。生活中食谱、导航、天气预报都运用建模思想。本质上,建模是把现实难题变成可计算的"游戏规则",实现理解、预测与创新。(149字)原创 2025-06-06 03:59:42 · 605 阅读 · 0 评论 -
模型调整参数:像调音师一样优化预测
摘要: 模型调整参数是指模型通过自动优化内部变量(如权重和偏置)来提升预测准确性。其过程类似于日常生活中的经验学习: 比喻:像做菜时边尝边调整调料,投篮后修正动作,或通过错题本改进知识漏洞; 技术实现:通过计算预测误差(损失函数),利用梯度下降法确定参数调整方向及幅度,逐步优化; 线性回归实例:模型反复计算预测值、误差和梯度,动态调整参数(如权重w和偏置b),直至预测结果接近真实值。这一过程如同调音师微调乐器,通过持续反馈达到最佳状态。核心思想是“尝试-反馈-调整”的迭代优化。原创 2025-05-28 02:55:45 · 790 阅读 · 0 评论 -
模型预测值:从公式到结果的详细解析
摘要: 计算预测值是模型训练中将输入数据代入当前参数公式得出的结果。例如房价预测模型根据面积、楼层等参数计算预测房价。过程类似按菜谱调配方尝味道,或按评分标准计算学生总分。训练时通过比较预测值与真实值的误差优化模型参数。核心是用现有公式计算预估结果,再逐步调整提升准确性。原创 2025-05-28 02:32:43 · 391 阅读 · 0 评论 -
生活中的优化模型:聪明决策的科学指南
摘要: 优化模型是通过数学或逻辑方法在约束条件下寻找最优决策的工具。生活中常见的例子包括买菜省钱(线性规划)、考试时间分配(整数规划)和快递路线规划(旅行商问题)。其核心要素是目标(如最大收益)、约束(如预算限制)和变量(如购买数量)。实际应用涵盖生产调度、物流配送及投资组合等领域。求解工具包括Excel、Python(如PuLP)和专业软件(如CPLEX)。一句话总结:优化模型是科学决策的“导航仪”,帮助在复杂选择中锁定最佳方案。 (字数:150)原创 2025-05-28 01:21:59 · 715 阅读 · 0 评论 -
网络模型:解开复杂世界的连接密码
网络模型是用"点"和"线"描述事物关系的工具,它将复杂关系可视化。常见网络模型包括:小世界网络(如六度分隔理论)、无标度网络(如微博大V与普通用户的连接)和PageRank算法(评估网页重要性)。这些模型广泛应用于社交网络分析、交通优化、疫情传播研究等领域,帮助我们发现关键节点、优化路径、分析信息传播模式。网络模型就像一张"关系网",通过简化复杂世界的连接,让我们更清晰地理解各类系统的结构和运行规律。原创 2025-05-28 01:12:20 · 673 阅读 · 0 评论 -
生活中的随机模型:骰子、彩票与天气预报
文章摘要: 随机模型用于描述结果不确定但存在概率规律的现象(如掷骰子、天气预报)。与确定性模型不同,其输出结果具有偶然性。常见形式包括概率分布(如正态分布、泊松分布)和随机过程(如股票波动)。正态分布是典型随机模型,呈钟形曲线,广泛应用于预测身高、考试排名等场景。其他模型如二项分布、马尔可夫链在金融、医学等领域也有重要应用。随机模型的核心价值在于通过概率量化不确定性,帮助决策和分析。原创 2025-05-28 01:07:43 · 694 阅读 · 0 评论 -
动态模型:数学如何预测未来变化
动态模型是用来描述随时间变化过程的数学工具,关注当前状态如何影响未来状态。生活中常见的例子包括鱼缸中鱼的数量变化、银行存款增长和疫情传播等。与静态模型不同,动态模型研究的是变化过程而非固定关系。常见的动态模型形式包括差分方程(离散时间)和微分方程(连续时间),广泛应用于人口预测、疫情模拟、金融投资和生态系统研究等领域。通过这些模型,可以像观看动画一样追踪事物的动态演变过程,并用数学公式量化其变化规律。原创 2025-05-28 00:56:20 · 843 阅读 · 0 评论 -
非线性模型:生活中的弯曲智慧
摘要(150字) 非线性模型通过曲线关系描述变量间的复杂变化,比线性模型更贴合现实。文中用生活实例生动阐释:爬山比喻非线性增长的变速特点;学习效果和细菌繁殖展示指数增长;感官刺激说明对数关系;促销折扣体现非线性衰减。进一步分析了四种典型非线性模型:抛物线模型(如抛篮球)、指数模型(如细菌繁殖)、对数模型(如声音感知)和S型模型(如产品推广),揭示其在物理、经济、生物等领域的应用。非线性模型能更精准刻画边际效应、增长极限等现实规律,是理解复杂现象的重要工具。原创 2025-05-28 00:47:20 · 782 阅读 · 0 评论 -
生活中的线性模型:用直尺连接世界
线性模型是用直线(y=ax+b)描述变量关系的工具,a为斜率,b为截距。生活中随处可见:如打车费(起步价+里程价)、加班工资(底薪+时薪)。特点是直观、简单,表现为固定增长率的直线关系。多元线性模型则扩展至多变量(y=a₁x₁+a₂x₂+...+b),像做菜时多种调料共同影响味道。这类模型能同时分析多个因素的影响,适用于房价预测、考试成绩等场景。本质上,线性模型就是用数学"直尺"衡量变量间的固定比例关系,单变量是直线,多变量则形成多维平面。原创 2025-05-28 00:34:12 · 221 阅读 · 0 评论 -
L1正则化(Lasso回归)
通过这些比喻和可视化的方式,我们可以更生动形象地理解L1正则化(Lasso回归)的核心原理。它不仅是一个数学工具,更是一个帮助我们在复杂数据中提取重要信息的有效方法。这个比喻非常形象地展示了L1正则化(Lasso回归)在特征选择中的作用。为了进一步丰富这个比喻,我们可以扩展一下这个场景,增加一些细节和情境,使其更具生动性和易于理解。通过这个扩展的比喻,我们可以更深入地理解L1正则化(Lasso回归)在特征选择中的作用。它不仅是一个数学工具,更是一个帮助我们在复杂数据中提取重要信息的有效方法。原创 2025-01-07 00:30:09 · 799 阅读 · 0 评论 -
基于房价预测案例生动形象谈模型训练之正则化
通过房价预测的案例,我们可以看到正则化在模型训练中的重要性。它不仅帮助我们控制模型的复杂性,防止过拟合,还提高了模型的泛化能力和可解释性。在实际应用中,正则化是一个不可或缺的工具,能够帮助我们构建更稳健、更可靠的预测模型。让我们继续深入探讨正则化在房价预测中的应用,特别是一些具体的技术细节、模型评估方法以及如何在实际项目中实施正则化。原创 2025-01-06 23:44:52 · 960 阅读 · 0 评论 -
模型优化之特征选择
特征选择就像是挑选食材做菜的过程。通过选择最重要的特征(食材),去除冗余和不必要的部分,您可以构建出一个更强大、更有效的模型(美味的菜肴)。这个过程不仅能提高模型的性能,还能使模型更易于理解和解释。让我们继续深入探讨特征选择的概念,并通过更多的比喻和实例来加深理解。特征选择是机器学习模型优化中不可或缺的一部分。通过选择最重要的特征,我们可以提高模型的性能、减少过拟合、提高计算效率,并增强模型的可解释性。就像在厨房中挑选食材一样,特征选择需要仔细的考虑和实验,以确保最终的“菜肴”既美味又令人满意。原创 2025-01-06 23:20:04 · 693 阅读 · 0 评论 -
回归模型拟之R²(决定系数)
R²(决定系数)是评估回归模型性能的重要指标,但在使用时应注意其局限性。结合调整后的R²和其他评估指标(如均方误差、平均绝对误差等)可以更全面地评估模型的表现。如果您有其他问题或需要进一步的解释,请随时告诉我!原创 2025-01-06 23:02:15 · 987 阅读 · 0 评论 -
房价预测模型分析
线性回归是一种简单而有效的回归分析方法,适用于房价预测等许多实际问题。通过合理选择特征、优化模型和评估性能,可以为决策提供有价值的支持。尽管线性回归模型在许多情况下表现良好,但在处理复杂非线性关系时,可能需要考虑其他更复杂的模型(如决策树、随机森林或神经网络等)。接下来,我们将深入探讨线性回归模型在房价预测中的具体实现步骤,包括数据处理、模型训练、评估和优化等方面的详细内容。原创 2025-01-06 22:49:56 · 1551 阅读 · 0 评论 -
信用评分模型的详细分析
通过上述数学模型,金融机构可以量化借款人的信用风险,并在信贷审批中做出更为科学的决策。在现代金融体系中,信用评分模型是评估借款人信用风险的重要工具。通过建立信用评分模型,银行可以量化借款人的信用风险,从而做出更为科学的贷款决策。该银行的目标是通过数据驱动的方法,快速评估借款人的信用风险,并提高信贷决策的效率。在信用评分模型的实施中,通常会使用一些数学模型来量化借款人的信用风险。通过以上步骤和措施,金融机构能够有效地利用信用评分模型来评估借款人的信用风险,从而优化信贷决策,降低违约风险,提高整体业务效率。原创 2025-01-06 22:08:19 · 1438 阅读 · 0 评论 -
模型验证:你的数据科学“试金石”
模型验证是评估模型可靠性和实用性的关键步骤。文章通过生活化比喻(如试菜、考试、试衣服)生动解释了模型验证的概念,说明其目的是检验模型在现实中的准确性。文中详细介绍了三种常见验证方法:留出法(切分数据训练测试)、交叉验证(轮流验证数据)和混淆矩阵(统计分类结果),分析各自的优缺点及适用场景。这些方法如同考试或试吃,能科学评估模型表现,确保其在实际应用中的有效性。最终目标是验证模型是否"靠谱",能否投入实际使用。原创 2025-01-06 03:07:51 · 1014 阅读 · 0 评论 -
数学建模之模型训练
以上案例展示了在不同领域中模型训练的实际应用,包括信用评分、销售预测、图像分类和情感分析。每个案例都遵循了数据准备、模型选择、训练、评估和持续改进的基本步骤。通过这些案例,我们可以看到模型训练不仅仅是一个技术过程,还需要结合业务需求、用户反馈和市场变化进行不断优化。高质量的数据:数据的质量直接影响模型的性能,确保数据的准确性和代表性至关重要。合适的模型选择:根据具体任务选择合适的模型,可能需要尝试多种模型以找到最佳解决方案。持续的监控与改进。原创 2025-01-06 03:04:01 · 1007 阅读 · 0 评论 -
数学建模之数据收集
数据收集是数学建模的基础,直接影响模型的构建和结果的可靠性。通过系统化的收集过程、合理的数据来源和严格的数据质量控制,可以为后续的建模和分析奠定坚实的基础。随着数据科学和技术的发展,数据收集的工具和方法也在不断演进,研究者应保持对新技术的关注,以提高数据收集的效率和效果。通过这个城市交通流量预测的案例,我们可以看到数据收集在整个建模过程中的重要性。多样化的数据来源:结合交通流量、气象、事件和道路信息等多种数据来源,可以更全面地理解影响交通流量的因素。系统化的数据收集方法。原创 2025-01-06 02:46:33 · 1259 阅读 · 0 评论 -
问题抽象:从现实到数学模型的智慧
摘要: 问题抽象是将复杂现实问题简化为核心数学模型的过程,忽略次要因素,聚焦关键变量。例如,外卖送餐可抽象为最短路径问题,疫情传播简化为SIR模型三分类。抽象步骤包括:识别核心因素、合理简化、数学表达(如变量、方程)。其优势在于使问题可解、凸显本质并便于推广。以共享单车调度为例,通过确定站点需求、运输路线等核心变量,建立运输问题的线性规划模型。日常练习可帮助掌握这一方法,提升问题建模能力。原创 2025-01-06 02:40:55 · 1039 阅读 · 0 评论 -
数据清洗:让脏数据变美味的择菜术
数据清洗摘要(145字) 数据清洗是将原始杂乱数据整理为规范可用数据的过程,类比烹饪前的食材处理。主要内容包括:1)去除重复数据;2)处理缺失值(删除或填补);3)修正错误数据(如异常年龄值);4)剔除异常值(通过箱线图等方法识别);5)统一标准(单位、格式)。其重要性如同整理房间或清洗蔬果,直接影响后续分析质量。关键技术涉及插值法、统计法及机器学习算法(如孤立森林)。清洗后的优质数据是建模分析的基础。原创 2025-01-06 02:31:25 · 1340 阅读 · 0 评论 -
模型改进与应用:让理论更贴近现实
模型评估与改良是一个迭代的过程。通过评估模型的性能,我们可以识别出模型的不足之处,并采取相应的措施进行改良。以下是对模型评估与改良过程的进一步总结和扩展。模型评估与改良是一个动态的、迭代的过程,旨在不断提高模型的性能和泛化能力。通过系统地评估模型、分析结果并实施改良措施,我们可以构建出更为准确和可靠的预测模型。评估指标的选择:根据具体任务选择合适的评估指标,以全面反映模型性能。特征工程的重要性:特征的选择和构造对模型性能有显著影响,需认真对待。模型的多样性。原创 2025-01-06 02:22:53 · 853 阅读 · 0 评论 -
数学建模参数:像调料一样关键
模型参数是决定模型表现的关键因素,就像做菜时的调料、汽车的油门或衣服的尺码,不同参数会导致不同的结果。在数学建模中,参数如人口增长模型的初始人口和增长率,或走路问题的速度和时间,直接影响输出。参数的作用包括调节模型输出、反映现实差异,且需通过数据确定。通过小明调果汁配比的小故事,形象说明"调参"过程。总结为口诀:模型参数像调料,决定结果变化;需数据支撑才能准确。举例线性回归、抛物线运动等模型,说明斜率、截距等参数的具体意义和应用场景。原创 2025-01-06 02:17:25 · 1658 阅读 · 0 评论 -
数学建模:用数学解决现实问题的万能钥匙
数学建模是用数学方法解决实际问题的过程,通过"翻译"现实问题为数学语言,进行分析预测并指导决策。其流程类似做菜:选择问题、分析要素、建立模型(如方程或算法)、求解验证(如仿真)、优化并应用(如最优路线)。典型应用包括外卖路径优化、疫情预测、排队分析等,本质是搭建数学与现实的桥梁,让两者相互理解与应用。原创 2025-01-04 21:41:40 · 175 阅读 · 0 评论 -
数学建模:修理现实难题的数学放大镜
数学建模就像生活中解决问题的过程:从发现问题(如水管漏水或上学迟到),到分析关键因素(找出漏点或时间分配),建立数学模型(画图纸或列时间表),求解验证(计算压力或测试时间),最后应用结果(修理水管或调整作息)。整个过程如同侦探破案与工程师设计的结合,通过数学工具把现实问题转化为可计算的方案,最终指导实践。生活中的点外卖、省电费等问题都可以用类似的建模思维高效解决。原创 2025-01-06 01:47:52 · 1061 阅读 · 0 评论 -
摘要和引言的作用
概述研究内容摘要提供了研究的简要概述,包括研究的目的、方法、主要结果和结论。它帮助读者快速了解研究的核心内容。吸引读者一个好的摘要能够吸引读者的兴趣,使他们愿意进一步阅读整篇论文。它通常是读者接触研究的第一部分,因此需要简洁而有力。信息检索摘要通常是数据库索引和文献检索的关键部分。研究人员在查找相关文献时,往往通过摘要来判断一篇文章是否与他们的研究主题相关。总结研究贡献摘要中应明确指出研究的创新点和贡献,帮助读者理解该研究在特定领域中的重要性。摘要。原创 2025-01-05 23:38:17 · 290 阅读 · 0 评论 -
数学建模应用实例
以下是几个具体的数学建模应用实例,涵盖不同领域和问题,展示了数学建模在实际中的重要性和有效性。原创 2025-01-05 23:37:34 · 607 阅读 · 0 评论 -
数学建模之敏感性分析
敏感性分析在不同领域的应用案例中,展示了其在理解模型行为、优化决策和管理风险方面的重要性。通过识别关键参数和评估其对结果的影响,决策者能够做出更为科学和有效的决策。无论是在经济学、工程、环境科学还是金融领域,敏感性分析都是一个不可或缺的工具。原创 2025-01-05 23:37:03 · 1281 阅读 · 0 评论