python——读取、显示、保存las点云

本文介绍了如何使用laspy库在Python中读取、显示真彩点云并保存为LAS/LAZ格式。通过laspy读取点云文件,利用open3d库实现点云的可视化,并提供了保存点云的代码示例。

一、读取点云

  laspy中的laspy.read()函数实现读取文件中的所有内容(公共头、变长记录、点记录、…),并返回一个可用于访问数据的对象。
函数解析:

laspy.read(source, closefd=True, laz_backend=())
  • source:待读取的点云文件名
  • laz_backend :(可选,当文件作为LAZ文件时要使用的后缀名。)-默认情况下,laspy将找到自己要使用的后缀。如果要使用特定的后缀名,则需要使用该参数。<
### 使用Halcon和Python联合读取点云 为了实现使用Halcon和Python联合读取点云的功能,可以遵循以下说明。确保已按照先前的要求安装并配置好了相应的软件环境[^1]。 #### 安装必要的依赖包 在开始之前,确认已经成功设置了HALCON 20.11及以上版本以及Python 3.8或更高版本的环境,并通过pip工具安装了`mvtec-halcon`库[^3]。 ```bash pip install mvtec_halcon==20111 ``` #### 导入所需的模块 接下来,在Python脚本中导入处理三维数据所必需的Halcon操作符和其他辅助函数: ```python import numpy as np from halcon import * # 假设这里是从MVTec HALCON官方API获取的操作符集合 ``` #### 加载点云文件 假设有一个LAS/LAZ格式或其他常见类型的点云文件待加载,则可以通过如下方式完成此过程: ```python # 替换为实际路径名 point_cloud_file_path = 'path/to/your/pointcloud.las' # 创建一个新的XLD对象用于存储点云信息 gen_empty_obj(point_cloud_xld) # 调用read_point_cloud_from_las来解析指定位置处的las/laz文件并将结果存入到创建好的XLD变量里 read_point_cloud_from_las(point_cloud_xld, point_cloud_file_path) ``` 注意上述代码片段中的具体参数可能依据实际情况有所不同;特别是对于不同扩展名的输入文件类型,应该选用合适的读取器(例如`.ply`, `.xyz`等),这取决于目标平台支持的情况。 #### 将点云转换成NumPy数组形式以便后续分析 一旦获得了表示点云的对象之后,就可以进一步将其转化为更易于操纵的数据结构——比如Numpy数组: ```python get_points_3d(point_cloud_xld, row, col, z_value) points_np = np.column_stack((row.A(), col.A(), z_value.A())) print(points_np.shape) # 输出应显示(N, 3),其中N代表总点数 ``` 此处利用到了`get_points_3d()`这一内置算子提取原始坐标值,并最终组合成为形状为`(N, 3)`的标准矩阵布局,方便后续应用各种机器学习算法或者可视化技术对其进行探索性研究。 以上就是关于怎样借助于Halcon与Python协同工作从而达到读取点云目的的大致流程介绍。希望这些指导能够帮助读者顺利开展相关项目实践!
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值