这期推文的封面是一张富集分析的网络图,来自文献:Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations,算是比较新颖的富集展示方法,是用Cytoscape做的。
之前我介绍过一个网页工具,可以做富集结果的网络图,这篇推文的阅读量已经是我的小破公众号关注人数的两倍多,可以看出大家对这个很感兴趣。这一期,我继续介绍这种网络图,用到的是Cytoscape,比之前的网页工具可定制程度更高。主要参考的protocol来自文献:Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap。
公众号后台回复20210401获取这篇protocol,以及测试数据。 这篇文献除了写富集可视化,还写了如何做富集分析、GSEA,考虑相当周到,通读全文可以发现不少知识点,满满都是干货,比如
- 做GSEA时,不需要对基因做过滤
- Biological process是最常用的GO注释
- 做GSEA时,需要对基因排序,排序的标准可以是一个或多个指标的结合,比如log-transformed fold-change,−log10 P value multiplied by the sign of log-transformed fold-change
- 将冗余的通路合并到单个生物主题能简化后续的解释。这种网路图就是这个目的,每一个通路是一个圆点,两个通路之间共享很多基因的话会用线连起来,共享基因数目越多,线越粗
...
什么是Cytoscape? Cytoscape是一个开源软件平台,主要用于分子互作网络和生物通路的可视化,以及将这些网络与注释信息,基因表达谱整合起来。 尽管Cytoscape最初是为生物学研究而设计的,但现在它是进行复杂网络分析和可视化的通用平台。
当我打开官网的时候,我惊呆了,真的太好看了!