NLP:自然语言处理技术领域的代表性算法概述(技术迭代路线图/发展时间路线)、四大技术范式变迁概述(统计时代→大模型时代)、四个时代的技术方法论探究之详细攻略daiding已全部迁移

这篇博客详述了自然语言处理(NLP)技术的发展历程,从早期的规则方法到统计时代,再到深度学习和预训练大模型的崛起。重点介绍了NLP算法的时间线,如NNLM、Word2Vec、Seq2Seq、BERT到ChatGPT,以及技术范式的变迁,包括完全监督、端到端、预训练和提示学习。同时,探讨了预训练大模型如GPT-3和ChatGPT的核心技术以及高昂的训练成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NLP:自然语言处理技术领域的代表性算法概述(技术迭代路线图/发展时间路线)、四大技术范式变迁概述(统计时代→大模型时代)、四个时代的技术方法论探究(少数公司可承担的训练成本原因)之详细攻略

目录

一、NLP代表性算法的简介

1.1、NLP代表性算法技术迭代图文路线

NNLM → Word2Vec → Seq2Seq → Seq2Seq with Attention → Transformer → ELMo → GPT → BERT→ ChatGPT

1.2、NLP代表性算法时间路线

2000年~2012年:SMT

2013年~2017年:Word2Vec、Seq2Seq、Attention 、LSTM

2017年~2022年:Transformer、GPT、BERT

2023年~至今:GPT-4

NLP之PTM:自然语言处理领域—预训练大模型时代各种吊炸天算法概述(NNLM→Word2Vec→ELMO→Attention→Transformer→GPT/BERT系列)、关系梳理、模型对比之详细

二、NLP技术范式的变迁

2.1、基于非NN的完全监督:手工特征

2.2、基于NN的完全监督:端到端

2.3、预训练+精调

2.4、预训练+提示

三、NLP技术四个时代的技术方法论探究

3.1、20世纪50年代:基于规则的方法—耗时费力、效果不尽人意

3.2、20世纪80年代:基于统计方法—更灵活,但需大量标注、解释性弱

(1)、初级—概率统计法—解释性弱

(2)、进阶—机器学习方法—需专业调优

3.3、21世纪初:深度学习方法/数据驱动的语言模型阶段—泛化性、鲁棒性、特殊任务比不过传统方法

(1)、从基于传统神经网络的模型→基于预训练模型的模型的发展过程

(2)、NLP领域,语言模型和预训练模型的区别

3.4、2018年:预训练大模型阶段—吊炸天

(1)、预训练大模型阶段的概述

(2)、优秀算法的核心技术

GPT-3的核心技术

ChatGPT的核心技术

(3)、为什么只有少数公司和机构能够承担这样的训练成本


一、NLP代表性算法的简介

1.1、NLP代表性算法技术迭代图文路线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值