NLP:自然语言处理技术领域的代表性算法概述(技术迭代路线图/发展时间路线)、四大技术范式变迁概述(统计时代→大模型时代)、四个时代的技术方法论探究(少数公司可承担的训练成本原因)之详细攻略
目录
NNLM → Word2Vec → Seq2Seq → Seq2Seq with Attention → Transformer → ELMo → GPT → BERT→ ChatGPT
2013年~2017年:Word2Vec、Seq2Seq、Attention 、LSTM
2017年~2022年:Transformer、GPT、BERT
NLP之PTM:自然语言处理领域—预训练大模型时代各种吊炸天算法概述(NNLM→Word2Vec→ELMO→Attention→Transformer→GPT/BERT系列)、关系梳理、模型对比之详细
3.1、20世纪50年代:基于规则的方法—耗时费力、效果不尽人意
3.2、20世纪80年代:基于统计方法—更灵活,但需大量标注、解释性弱
3.3、21世纪初:深度学习方法/数据驱动的语言模型阶段—泛化性、鲁棒性、特殊任务比不过传统方法
(1)、从基于传统神经网络的模型→基于预训练模型的模型的发展过程